∴OP1⊥OP2 ∴∠P1OP2=. 查看更多

 

题目列表(包括答案和解析)

如图,双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的渐近线为l1,l2,离心率为
13
3
,P1∈l1,P2∈l2,且
OP1
OP2
=t
P2P
PP1
(λ>0),P在双曲线C右支上.
(1)若△P1OP2的面积为6,求t的值;
(2)t=5时,求a最大时双曲线C的方程.

查看答案和解析>>

已知椭圆C1的方程是
x2
4
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,C2的左、右顶点分别为C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A,B,且
OA
OB
>2
(O为原点),求k的取值范围;
(3)设P1,P2分别是C2的两条渐近线上的点,点M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面积.

查看答案和解析>>

如图,双曲线C:
x2
a2
-
y2
b2
=1
(a>0,b>0)的渐近线为l1,l2,离心率为
13
3
,P1∈l1,P2∈l2,且
OP1
OP2
=t
P2P
PP1
(λ>0),P在双曲线C右支上.
(1)若△P1OP2的面积为6,求t的值;
(2)t=5时,求a最大时双曲线C的方程.
精英家教网

查看答案和解析>>

已知椭圆C1的方程是
x2
4
+y2=1
,双曲线C2的左、右焦点分别为C1的左、右顶点,C2的左、右顶点分别为C1的左、右焦点.
(1)求双曲线C2的方程;
(2)若直线l:y=kx+
2
与双曲线C2恒有两个不同的交点A,B,且
OA
OB
>2
(O为原点),求k的取值范围;
(3)设P1,P2分别是C2的两条渐近线上的点,点M在C2上,且
OM
=
1
2
(
OP1
+
OP2
)
,求△P1OP2的面积.

查看答案和解析>>

已知函数f(x)=
a•2x
2x+
2
的图象过点(0,
2
-1)

(1)求f(x)的解析式;
(2)设P1(x1,y1),P2(x2,y2)为y=f(x)的图象上两个不同点,又点P(xP,yP)满足:
OP
=
1
2
(
OP1
+
OP2
)
,其中O为坐标原点.试问:当xP=
1
2
时,yP是否为定值?若是,求出yP的值,若不是,请说明理由.

查看答案和解析>>


同步练习册答案