题目列表(包括答案和解析)
(本小题满分12分)
已知函数f(x)=mx-,g(x)=2lnx.
(Ⅰ)当m=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)当m=1时,证明方程f(x)=g(x)有且仅有一个实数根;
(Ⅲ)若xÎ(1,e]时,不等式f(x)-g(x)<2恒成立,求实数m的取值范围.
(15分) 如图,已知点P在圆柱OO1的底面⊙O上,AB、A1B1分别为⊙O、⊙O1的直径,且A1A⊥平面PAB.
(1)求证:BP⊥A1P;
(2)若圆柱OO1的体积V=12π,OA=2,∠AOP=120°,求三棱锥A1-APB的体积.
(3)在AP上是否存在一点M,使异面直线OM与A1B所成角的余弦值为
?若存在,请指出M的位置,并证明;若不存在,请说明理由.
(1)写出a2,a3的值,并求出an;
(2)是否存在最大的正数M,使
≥M对一切正整数n都成立?若存在,试探求出M的值并加以证明;若不存在,请说明理由.
本小题满分14分)如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,PA⊥平面ABCD,点M、N分别为BC、PA的中点,且PA=AD=2,AB=1,AC=
.
(Ⅰ)证明:CD⊥平面PAC;
(Ⅱ)在线段PD上是否存在一点E,使得NM∥平面ACE;若存在,求出PE的长;若不存在,说明理由.
![]()
设M是满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”
(1)若函数f(x)为集合M中的任一元素,试证明方程f(x)-x=0只有一个实根;
(2)判断函数g(x)=
-
+3(x>1)是否是集合M中的元素,并说明理由;
(3)“对于(2)中函数g(x)定义域内的任一区间[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,请利用函数y=lnx的图像说明这一结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com