解: (1) 令或 所以函数的单调递减区间为, . (2) 因为 所以. 因为在上, 所以在上单调递增, 又由于 在上单调递减, 因此和分别是在区间上的最大值和 最小值, 于是有. 故 因此, 即函数在区间上的最小值为. 查看更多

 

题目列表(包括答案和解析)

的导数为,若函数的图象关于直线对称,且.

(Ⅰ)求实数的值;

(Ⅱ)求函数的单调区间.

【解析】第一问中,由于函数的图象关于直线对称,所以.

  ∴

第二问中由(Ⅰ),

   令,或

∴函数上递增,在上递减.

 

查看答案和解析>>

设函数

(I)求的单调区间;

(II)当0<a<2时,求函数在区间上的最小值.

【解析】第一问定义域为真数大于零,得到.                            

,则,所以,得到结论。

第二问中, ().

.                          

因为0<a<2,所以.令 可得

对参数讨论的得到最值。

所以函数上为减函数,在上为增函数.

(I)定义域为.           ………………………1分

.                            

,则,所以.  ……………………3分          

因为定义域为,所以.                            

,则,所以

因为定义域为,所以.          ………………………5分

所以函数的单调递增区间为

单调递减区间为.                         ………………………7分

(II) ().

.                          

因为0<a<2,所以.令 可得.…………9分

所以函数上为减函数,在上为增函数.

①当,即时,            

在区间上,上为减函数,在上为增函数.

所以.         ………………………10分  

②当,即时,在区间上为减函数.

所以.               

综上所述,当时,

时,

 

查看答案和解析>>


同步练习册答案