解:(1)∵ ∴ 当时. 即 ∵ ∴ 即数列是等比数列 ∵ ∴ 即 ∴ ∵ 点在直线上 ∴ ∴ 即数列是等差数列.又 ∴ (2) ① ∴ ② ①-②得 即 ∴ ∵ 即 于是 又由于当时. 当时. 故满足条件最大的正整数n为4 . 查看更多

 

题目列表(包括答案和解析)

(本小题满分13分)

       为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克).下表是乙厂的5件产品的测量数据:

编号

1

2

3

4

5

x

169

178

166

175

180

y

75

80

77

70

81

(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;

(2)当产品中的微量元素x,y满足x≥175,且y≥75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;

(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。

查看答案和解析>>

(本小题满分14分)               

已知函数的图像经过点.

(1)求该函数的解析式;

(2)数列中,若为数列的前项和,且满足

证明数列成等差数列,并求数列的通项公式;

(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成

如下数表:

 

    

      

记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当

时,求上表中第行所有项的和.

 

查看答案和解析>>

(本小题满分14分)               
已知函数的图像经过点.
(1)求该函数的解析式;
(2)数列中,若为数列的前项和,且满足
证明数列成等差数列,并求数列的通项公式;
(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成
如下数表:


 
   
     
记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第行所有项的和.

查看答案和解析>>

(本小题满分14分)               
已知函数的图像经过点.
(1)求该函数的解析式;
(2)数列中,若为数列的前项和,且满足
证明数列成等差数列,并求数列的通项公式;
(3)另有一新数列,若将数列中的所有项按每一行比上一行多一项的规则排成
如下数表:

 
   
     
记表中的第一列数构成的数列即为数列,上表中,若从第三行起,第一行中的数按从左到右的顺序均构成等比数列,且公比为同一个正数.当
时,求上表中第行所有项的和.

查看答案和解析>>

已知递增等差数列满足:,且成等比数列.

(1)求数列的通项公式

(2)若不等式对任意恒成立,试猜想出实数的最小值,并证明.

【解析】本试题主要考查了数列的通项公式的运用以及数列求和的运用。第一问中,利用设数列公差为

由题意可知,即,解得d,得到通项公式,第二问中,不等式等价于,利用当时,;当时,;而,所以猜想,的最小值为然后加以证明即可。

解:(1)设数列公差为,由题意可知,即

解得(舍去).      …………3分

所以,.        …………6分

(2)不等式等价于

时,;当时,

,所以猜想,的最小值为.     …………8分

下证不等式对任意恒成立.

方法一:数学归纳法.

时,,成立.

假设当时,不等式成立,

时,, …………10分

只要证  ,只要证 

只要证  ,只要证 

只要证  ,显然成立.所以,对任意,不等式恒成立.…14分

方法二:单调性证明.

要证 

只要证  ,  

设数列的通项公式,        …………10分

,    …………12分

所以对,都有,可知数列为单调递减数列.

,所以恒成立,

的最小值为

 

查看答案和解析>>


同步练习册答案