已知的定义域为R.的导函数的图像如所示.则 ( ) A.在处取得极小值 B.在处取得极大值 C.是上的增函数 D.是上的减函数.上的增函数 查看更多

 

题目列表(包括答案和解析)

精英家教网已知f(x)是定义域为R的奇函数,f(-4)=-1,f(x)的导函数f′(x)的图象如图所示.若两正数a,b满足f(a+2b)<1,则
a+2
b+2
的取值范围是(  )
A、(
1
3
,2)
B、(
1
2
,3)
C、(-1,10)
D、(-∞,-1)

查看答案和解析>>

已知f(x)是定义域为R的奇函数,f(-4)=-2,f(x)的导函数f′(x)的图象如图所示,若两正数a,b满足f(a+2b)<2,则
a+4
b+4
的取值范围是(  )

查看答案和解析>>

已知函数f(x)=lnx,g(x)=
12
ax2+bx(a≠0)

(1)当a=-2时,函数h(x)=f(x)-g(x)在其定义域内是增函数,求实数b的取值范围;
(2)令V(x)=2f(x)-x2-kx(k∈R),如果V(x)的图象与x轴交于A(x1,0)、B(x2,0)两点(0<x1<x2),且线段AB的中点为C(x0,0),函数V(x)的导函数为V′(x),求证:V′(x0)≠0.

查看答案和解析>>

已知y=f(x)是R上的可导函数,对于任意的正实数t,都有函数g(x)=f(x+t)-f(x)在其定义域内为减函数,则函数y=f(x)的图象可能为如图中(  )

查看答案和解析>>

定义:设函数y=f(x)在(a,b)内可导,f'(x)为f(x)的导数,f''(x)为f'(x)的导数即f(x)的二阶导数,若函数y=f(x) 在(a,b)内的二阶导数恒大于等于0,则称函数y=f(x)是(a,b)内的下凸函数(有时亦称为凹函数).已知函数f(x)=xlnx
(1)证明函数f(x)=xlnx是定义域内的下凸函数,并在所给直角坐标系中画出函数f(x)=xlnx的图象;
(2)对?x1,x2∈R+,根据所画下凸函数f(x)=xlnx图象特征指出x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]与x1lnx1+x2lnx2≥(x1+x2)[ln(x1+x2)-ln2]的大小关系;
(3)当n为正整数时,定义函数N (n)表示n的最大奇因数.如N (3)=3,N (10)=5,….记S(n)=N(1)+N(2)+…+N(2n),若
2n
i=1
xi=1
,证明:
2n
i=1
xilnxi≥-ln2n
ln
1
3S(n)-2
(i,n∈N*).

查看答案和解析>>


同步练习册答案