知道一元二次方程及其相关概念,了解求方程近似解的方法,能说出列方程解应用题的步骤. 查看更多

 

题目列表(包括答案和解析)

一元二次方程ax2+bx+c=0(a≠0,a,b,c都是有理数)的求根公式是x=
-b±
b2-4ac
2a
(b2-4ac≥0)通过研究我们知道:若方程的根是有理数根,则b2-4ac必是完全平方数,已知方程x2-2x+m=0的根是有理数,则下列数中,m可以取的是(  )

查看答案和解析>>

(2012•道外区二模)关于x的一元二次方程x2+bx-7=0的根的情况是(  )

查看答案和解析>>

(2013•永州)我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为(  )

查看答案和解析>>

一元二次方程ax2+bx+c=0(a≠0,a,b,c都是有理数)的求根公式是x=
-b±
b2-4ac
2a
(b2-4ac≥0)通过研究我们知道:若方程的根是有理数根,则b2-4ac必是完全平方数,已知方程x2-2x+m=0的根是有理数,则下列数中,m可以取的是(  )
A.8B.4C.-2D.-3

查看答案和解析>>

我们知道,一元二次方程x2=-1没有实数根,即不存在一个实数的平方等于-1.若我们规定一个新数“i”,使其满足i2=-1(即方程x2=-1有一个根为i).并且进一步规定:一切实数可以与新数进行四则运算,且原有运算律和运算法则仍然成立,于是有i1=i,i2=-1,i3=i2•i=(-1)•i=-i,i4=(i22=(-1)2=1,从而对于任意正整数n,我们可以得到i4n+1=i4n•i=(i4n•i=i,同理可得i4n+2=-1,i4n+3=-i,i4n=1.那么i+i2+i3+i4+…+i2012+i2013的值为(  )
A.0B.1C.-1D.i

查看答案和解析>>


同步练习册答案