运用数形结合的思想.方程的思想解决平行四边形中的计算和证明. Ⅳ.[实践] (1) 教师自行设计作业, (2) 复习指导用书第88--90页第1.4.5.7.8.10.11.13.15.16.17题. 第16课时 特殊平行四边形.梯形与证明 溧阳市第二中学 钱惠琴 复习教学目标: 查看更多

 

题目列表(包括答案和解析)

“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式
1
x
<1(x≠0).先考虑不等式的临界情况:方程
1
x
=1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、0<x<1和x>1三部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时,
1
x
<1成立.理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式
1
x
>1的解集是
0<x<1
0<x<1

(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式|x+1|>5的解集.

查看答案和解析>>

“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式
1
x
<1(x≠0).先考虑不等式的临界情况:方程
1
x
=1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、0<x<1和x>1三部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时,
1
x
<1成立.理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式
1
x
>1的解集是______;
(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式|x+1|>5的解集.

查看答案和解析>>

作业宝“数形结合”是一种极其重要的思想方法.例如,我们可以利用数轴解分式不等式数学公式<1(x≠0).先考虑不等式的临界情况:方程数学公式=1的解为x=1.如图,数轴上表示0和1的点将数轴“分割”成x<0、0<x<1和x>1三部分(0和1不算在内),依次考察三部分的数可得:当x<0和x>1时,数学公式<1成立.理解上述方法后,尝试运用“数形结合”的方法解决下列问题:
(1)分式不等式数学公式>1的解集是______;
(2)求一元二次不等式x2-x<0的解集;
(3)求绝对值不等式|x+1|>5的解集.

查看答案和解析>>

(1)6位新同学参加夏令营,大家彼此握手,互相介绍自己,这6位同学共握手多少次?

小莉是这样思考的:每一位同学要与其他5位同学握手5次,6位同学握手5×6=30次,但每两位同学握手2次,因此这6位同学共握手=15次.

依此类推,12位同学彼此握手,共握手________次.

(2)我们经常会遇到与上面类似的问题,如:

2条直线相交,最多只有1个交点;3条直线相交,最多有3个交点;……;求20条直线相交,最多有多少个交点?

(3)在上述问题中,分别把人、线看成是研究对象,两人握手、两线相交是研究对象间的一种关系,要求的握手总次数、最多交点数就是求所有对象间的不同关系总数.它们都是满足一种相同的模型.请结合你学过的数学知识和生活经验,编制一个符合上述模型的问题.

(4)请运用解决上述问题的思想方法,探究n边形共有多少条对角线?写出你的探究过程及结果.

查看答案和解析>>

(1)6位新同学参加夏令营,大家彼此握手,互相介绍自己,这6位同学共握手多少次?小莉是这样思考的:每一位同学要与其他5位同学握手5次,6位同学握手5×6=30次,但每两位同学握手2次,因此这6位同学共握手 数学公式=15次.依此类推,12位同学彼此握手,共握手________次.
(2)我们经常会遇到与上面类似的问题,如:2条直线相交,最多只有1个交点;3条直线相交,最多有3个交点;…;求20条直线相交,最多有多少个交点?
(3)在上述问题中,分别把人、线看成是研究对象,两人握手、两线相交是研究对象间的一种关系,要求的握手总次数、最多交点数就是求所有对象间的不同关系总数.它们都是满足一种相同的模型.请结合你学过的数学知识和生活经验,编制一个符合上述模型的问题.
(4)请运用解决上述问题的思想方法,探究n边形共有多少条对角线?写出你的探究过程及结果.

查看答案和解析>>


同步练习册答案