把一些较复杂的作图问题转化为基本作图问题来解决. 复习教学过程设计: 查看更多

 

题目列表(包括答案和解析)

换元法是把一个比较复杂的数学式子的一部分看成是一个整体,用另一个字母代替这一部分(即换元).换元法的好处是能使式子得到简化,各项的关系容易看清,便于解决问题.此方法充分体现了整体的数学思想.例如:用换元法解分式方程
2x-1
x
-
x
2x-1
=2
时,如果设
2x-1
x
=y
,并将原方程化为关于y的整式方程,那么这个整式方程是y2-2y-1=0,然后在解出y1和y2,再将y1和y2替换成
2x-1
x
=y1
2x-1
x
=y2
,即可解出x1和x2.请用换元法解方程:x2-
12
x2-2x
=2x-1

查看答案和解析>>

我们对一些较大的数设计出一种简单的记法:对n个连续出现的d,记为dn.其中n是正整数,d是一个一位整数(0≤d≤9).例如93857462表示 99988888777766.如果2x3y5z+3z5x2y=53835373,那么x,y,z的值分别是(  )

查看答案和解析>>

我们知道,根据二次函数的平移规律,可以由简单的函数通过平移后得到较复杂的函数,事实上,对于其他函数也是如此.如一次函数,反比例函数等.请问y=
3x-2
x-1
可以由y=
1
x
通过
 
平移得到.

查看答案和解析>>

从一个等边三角形(如图①)开始,把它的各边分成相等的三段,再在各边中间一段上向外画出一个小等边三角形,形成六角星图形(如图②);然后在六角星各边上,用同样的方法向外画出更小的等边三角形,形成一个有18个尖角的图形(如图③);如果在其各边上,再用同样的方法向外画出更小的等边三角形(如图④).如此继续下去,图形的轮廓就能形成分支越来越多的曲线,这就是瑞典数学家科赫将雪花理想化得到的科赫雪花曲线.
精英家教网
如果设原等边三角形边长为a,不妨把每一次的作图变化过程叫做“生长”,例如,第1次生长后,得图②,每个小等边三角形的边长为
1
3
a
,所形成的图形的周长为4a.
请填写下表:(用含a的代数式表示)
第1次
生长后
第2次
生长后
第3次
生长后
第n次
生长后
每个小等边
三角形的边长
1
3
a
 
 
 
所形成的
图形的周长
4a
 
 
 

查看答案和解析>>

100个船员把一些装有货物的大箱子搬运上岸,每个箱子要7个人抬.船长认为,各个船员的劳动量相同,因为他们每个人都参与搬运了65个箱子.证明:船长的计算有误.

查看答案和解析>>


同步练习册答案