解:(1)在△OAB中. ∵..∴AB=OB· OA= OB· ∴点B的坐标为(.1) 过点A´作A´D垂直于y轴.垂足为D. 在Rt△OD A´中 O DA´=OA´·. OD=OA´· ∴A´点的坐标为(.) (2)点B的坐标为(.1).点B´的坐标为(0.2).设所求的解析式为,则 解得..∴ 当时. ∴A´(.)在直线BB´上. 查看更多

 

题目列表(包括答案和解析)

已知:在Rt△ABO中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为轴,建立如图所示平面直角坐标系,点B在第一象限内,将Rt△ABO沿OB折叠后,点A落在第一象限内的点C处.

(1)求点C的坐标;(3分)

(2)若抛物线经过C、A两点,求此抛物线的解析式;(4分)

(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为很等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由. (5分)

 


查看答案和解析>>

如图,抛物线经过点A(-4,0)、B(-2,2),连接OB、AB。
(1)求该抛物线的解析式;
(2)求证:△OAB是等腰直角三角形;
(3)将△OAB绕点O按逆时针方向旋转135°,得到△OA′B′,写出A′B′的中点P的坐标,试判断点P是否在此抛物线上;
(4)在抛物线上是否存在这样的点M,使得四边形ABOM成直角梯形,若存在,请求出点M坐标及该直角梯形的面积,若不存在,请说明理由。

查看答案和解析>>

如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直线翻折,使OA与y轴正半轴的OC重合、点B的对应点为点D,连接AD交OB于点E.
(1)求AD所在直线的解析式:
(2)连接BD,若动点M从点A出发,以每秒2个单位的速度沿射线A0运动,线段AM的垂直平分线交直线AD于点N,交直线BD子Q,设线段QN的长为y(y≠0),点M的运动时间为t秒,求y与t之问的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,连接MN,当t为何值时,直线MN与过D、E、O三点的圆相切,并求出此时切点的坐标.

查看答案和解析>>

如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边0A在x轴正半轴上,且OA=4,AB=2,将△OAB沿某条直线翻折,使OA与y轴正半轴的OC重合、点B的对应点为点D,连接AD交OB于点E.
(1)求AD所在直线的解析式:
(2)连接BD,若动点M从点A出发,以每秒2个单位的速度沿射线A0运动,线段AM的垂直平分线交直线AD于点N,交直线BD子Q,设线段QN的长为y(y≠0),点M的运动时间为t秒,求y与t之问的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,连接MN,当t为何值时,直线MN与过D、E、O三点的圆相切,并求出此时切点的坐标.

查看答案和解析>>

如图,抛物线y=ax2+bx经过点A(4,0),B(2,2). 连结OBAB.

    (1)求该抛物线的解析式;

    (2)求证:△OAB是等腰直角三角形;

(3)将△OAB绕点O按顺时针方向旋转l35°得到△OA′B′,写出△OA′B′ 的边A′B′的中点P的坐标.试判断点P是否在此抛物线上,并说明理由.

查看答案和解析>>


同步练习册答案