在抛物线y=x2-2x+m上.求m的值, (2)若抛物线y=ax2+bx+m与抛物线y=x2-2x+m关于y轴对称.点Q1(-2,q1).Q2(-3.q2)都在抛物线y=ax2+bx+m上.则q1.q2的大小关系是 (请将结论写在横线上.不要写解答过程), (3)将抛物线y=x2-2x+m的顶点为M.若△AMB是直角三角形.求m的值. 查看更多

 

题目列表(包括答案和解析)

当抛物线的解析式中含有字母系数时,随着系数中字母取值的不同,抛物线的顶点坐标也将发生变化.例如:由抛物线y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴抛物线的顶点坐标为(m,2m-1),设顶点为P(x0,y0),则:数学公式
当m的值变化时,顶点横、纵坐标x0,y0的值也随之变化,将(3)代入(4)
得:y0=2x0-1.…(5)
可见,不论m取任何实数时,抛物线的顶点坐标都满足y=2x-1.
解答问题:
①在上述过程中,由(1)到(2)所用的数学方法是______,其中运用的公式是______.由(3)、(4)得到(5)所用的数学方法是______.
②根据阅读材料提供的方法,确定抛物线y=x2-2mx+2m2-4m+3的顶点纵坐标y与横坐标x之间的函数关系式.
③是否存在实数m,使抛物线y=x2-2mx+2m2-4m+3与x轴两交点A(x1,0)、B(x2,0)之间的距离为AB=4,若存在,求出m的值;若不存在,说明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>

已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1精英家教网x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点.
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

已知抛物线y=ax2+bx+c (a≠0)与x轴交于不同的两个点A(x1,0)和点B(x2,0)与y轴的正半轴交于点C,如果x1,x2是方程x2-2x-3=0的两个根(x1<x2),且图象经过点(2,3)
(1)求抛物线的解析式并画出图象
(2)x在什么范围内函数值y大于3且随x的增大而增大.
(3)设(1)中的抛物线顶点为D,在y轴上是否存在点P,使得DP+BP的和最小?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

已知抛物线y=ax2+bx+c (a≠0)与x轴交于不同的两个点A(x1,0)和点B(x2,0)与y轴的正半轴交于点C,如果x1,x2是方程x2-2x-3=0的两个根(x1<x2),且图象经过点(2,3)
(1)求抛物线的解析式并画出图象
(2)x在什么范围内函数值y大于3且随x的增大而增大.
(3)设(1)中的抛物线顶点为D,在y轴上是否存在点P,使得DP+BP的和最小?若存在,求出这个最小值;若不存在,说明理由.

查看答案和解析>>

已知抛物线y=ax2+bx+2与x轴相交于点A(x1,0),B(x2,0)(x1<x2),且x1,x2是方程x2-2x-3=0的两个实数根,点C为抛物线与y轴的交点。
(1)求a,b的值;
(2)分别求出直线AC和BC的解析式;
(3)若动直线y=m(0<m<2)与线段AC,BC分别相交于D,E两点,则在x轴上是否存在点P,使得△DEP为等腰直角三角形?若存在,求出点P的坐标;若不存在,说明理由。

查看答案和解析>>


同步练习册答案