过双曲线=1上一点P(x,y)的切线方程是(与椭圆类似.求导数可得斜率.) 查看更多

 

题目列表(包括答案和解析)

如图,已知双曲线C1=1(m>0,n>0),圆C2:(x-2)2y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线yx对称,设斜率为k的直线l过点C2

(1)求双曲线C1的方程;

(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.

查看答案和解析>>

曲线C是中心在原点,焦点在x轴上的双曲线,已知它的一个焦点F的坐标为(2,0),一条渐近线的方程为,过焦点F作直线交曲线C的右支于P、Q两点,R是弦PQ的中点.

(1)求曲线C的方程;

(2)若在y轴左侧能作出直线l:x=m,使以线段PQ为直径的圆与直线l相切,求实数m的取值范围.

查看答案和解析>>

曲线C是中心在原点,焦点在x轴上的双曲线,已知它的一个焦点F的坐标为(2,0),一条渐近线的方程为,过焦点F作直线交曲线C的右支于P、Q两点,R是弦PQ的中点.

(1)求曲线C的方程;

(2)若在y轴左侧能作出直线l:x=m,使以线段PQ为直径的圆与直线l相切,求实数m的取值范围.

查看答案和解析>>

已知点(2,2)在双曲线M:=1(m>0,n>0)上,圆C:(x-a)2+(y-b)2=r2(a>0,b∈R,r>0)与双曲线M的一条渐近线相切于点(1,2),且圆C被x轴截得的弦长为4.

(Ⅰ)求双曲线M的方程;

(Ⅱ)求圆C的方程;

(Ⅲ)过圆C内一定点Q(s,t)(不同于点C)任作一条直线与圆C相交于点A、B,以A、B为切点分别作圆C的切线PA、PB,求证:点P在定直线l上,并求出直线l的方程.

查看答案和解析>>

.已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为的直线,使得和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|·|PB|=|PC|2.   

(1)求双曲线G的渐近线的方程;  

(2)求双曲线G的方程;

(3)椭圆S的中心在原点,它的短轴是G的实轴.如果S中垂直于的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当的面积最大时点P的坐标.

 

查看答案和解析>>


同步练习册答案