2.向量运算和运算率 加法交换率: 加法结合率: 数乘分配率: 说明:①引导学生利用右图验证加法交换率.然后推广到首尾相接的若干向量之和,②向量加法的平行四边形法则在空间仍成立. 查看更多

 

题目列表(包括答案和解析)

(2012•梅州二模)非空集合G关于运算⊕满足:(1)对于任意a、b∈G,都有a⊕b∈G;(2)存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,则称G关于运算⊕为“融洽集”,现在给出集合和运算::
①G={非负整数},⊕为整数的加法;
②G={偶数},⊕为整数的乘法;
③G={平面向量},⊕为平面向量的加法;
④G={虚数},⊕为复数乘法,其中G为关于运算⊕的“融洽集”的个数为(  )

查看答案和解析>>

(2009•西安二模)非空集合G关于运算⊕满足,①对任意a、b∈G,都有a⊕b∈G; ②存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,则称G关于运算⊕的融洽集.现有下列集合和运算:
(1)G={非负整数},⊕整数的加法;
(2)G={偶数},⊕整数的乘法; 
(3)G={平面向量},⊕平面向量的加法.
其中为融洽集的个数是(  )

查看答案和解析>>

非空集合G关于运算⊕满足:(1)对任意a、b∈G,都有a⊕b∈G;(2)存在c∈G,使得对一切a∈G,都有a⊕c=c⊕a=a,则称G关于运算⊕为“融洽集”.现给出下列集合和运算:
①G={非负整数},⊕为整数的加法;
②G={偶数},⊕为整数的乘法;
③G={平面向量},⊕为平面向量的加法;
④G={二次三项式},⊕为多项式的加法.
其中G关于运算⊕为“融洽集”的是(  )

查看答案和解析>>

非空集合G关于运算⊕满足,①对任意a、b∈G,都有a⊕b∈G; ②存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,则称G关于运算⊕的融洽集.现有下列集合和运算:
(1)G={非负整数},⊕整数的加法;
(2)G={偶数},⊕整数的乘法; 
(3)G={平面向量},⊕平面向量的加法.
其中为融洽集的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

非空集合G关于运算⊕满足,①对任意a、b∈G,都有a⊕b∈G; ②存在e∈G,使对一切a∈G都有a⊕e=e⊕a=a,则称G关于运算⊕的融洽集.现有下列集合和运算:
(1)G={非负整数},⊕整数的加法;
(2)G={偶数},⊕整数的乘法; 
(3)G={平面向量},⊕平面向量的加法.
其中为融洽集的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>


同步练习册答案