5. 解集合问题的基本工具是韦恩图. 某文艺小组共有10名成员,每人至少会唱歌和跳舞中的一项,其中7人会唱歌跳舞5人会,现从中选出会唱歌和会跳舞的各一人.表演一个唱歌和一个跳舞节目,问有多少种不同的选法? 查看更多

 

题目列表(包括答案和解析)

下列四个有关算法的说法中,正确的是
①算法的各个步骤是可逆的 ②算法执行后一定得到确定的结果 ③解决某类问题的算法不是唯一的 ④算法一定在有限多步内结束.


  1. A.
    ②③④
  2. B.
    ①③④
  3. C.
    ①②④
  4. D.
    ①②③

查看答案和解析>>

下列关于算法的说法正确的有

[  ]

①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

下列关于算法的说法正确的有

[  ]

①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果.

A1

B2

C3

D4

查看答案和解析>>

已知函数f(x)=2sin2x+sin2x,x∈R.

(1)求函数f(x)的最大值、最小值及单调增区间;

(2)函数f(x)的图象是由函数y=sinx,x∈R的图象经过怎样的变换而得到的?

分析:解此类问题的关键是把函数f(x)转化成一个角的一个三角函数的形式.

查看答案和解析>>

已知函数f(x)=ex-ax,其中a>0.

(1)若对一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函数f(x)的图像上去定点A(x1, f(x1)),B(x2, f(x2))(x1<x2),记直线AB的斜率为k,证明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

单调递减;当单调递增,故当时,取最小值

于是对一切恒成立,当且仅当.        ①

时,单调递增;当时,单调递减.

故当时,取最大值.因此,当且仅当时,①式成立.

综上所述,的取值集合为.

(Ⅱ)由题意知,

,则.当时,单调递减;当时,单调递增.故当

从而

所以因为函数在区间上的图像是连续不断的一条曲线,所以存在使成立.

【点评】本题考查利用导函数研究函数单调性、最值、不等式恒成立问题等,考查运算能力,考查分类讨论思想、函数与方程思想等数学方法.第一问利用导函数法求出取最小值对一切x∈R,f(x) 1恒成立转化为从而得出求a的取值集合;第二问在假设存在的情况下进行推理,然后把问题归结为一个方程是否存在解的问题,通过构造函数,研究这个函数的性质进行分析判断.

 

查看答案和解析>>


同步练习册答案