精英家教网 > 高中数学 > 题目详情
已知函数f(x)=2sin2x+sin2x,x∈R.

(1)求函数f(x)的最大值、最小值及单调增区间;

(2)函数f(x)的图象是由函数y=sinx,x∈R的图象经过怎样的变换而得到的?

分析:解此类问题的关键是把函数f(x)转化成一个角的一个三角函数的形式.

解:(1)f(x)=1-cos2x+sin2x=1+sin(2x-).

∵-1≤sin(2x-)≤1,

∴1-≤f(x)≤1+.

∴函数f(x)的最大值是1+,最小值是1-.

由2kπ-≤2x-≤2kπ+(k∈Z),

解得kπ-≤x≤kπ+(k∈Z).

∴函数的单调递增区间为[kπ-,kπ+],k∈Z.

(2)将函数y=sinx的图象依次进行如下变换:

①把函数y=sinx的图象向右平移,得到函数y=sin(x-)的图象;

②把得到的图象上各点横坐标缩短到原来的倍(纵坐标不变),得到函数y=sin(2x-)的图象;

③把得到的图象上各点纵坐标伸长到原来的倍(横坐标不变),得到函数y=sin(2x-)的图象;

④把得到的图象向上平移1个单位长度,得到函数y=1+sin(2x-)的图象.

综上得到函数f(x)=2sin2x+sin2x的图象.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
2-xx+1

(1)求出函数f(x)的对称中心;
(2)证明:函数f(x)在(-1,+∞)上为减函数;
(3)是否存在负数x0,使得f(x0)=3x0成立,若存在求出x0;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-x-1,x≤0
x
,x>0
,则f[f(-2)]=
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2(sin2x+
3
2
)cosx-sin3x

(1)求函数f(x)的值域和最小正周期;
(2)当x∈[0,2π]时,求使f(x)=
3
成立的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2-
ax+1
(a∈R)
的图象过点(4,-1)
(1)求a的值;
(2)求证:f(x)在其定义域上有且只有一个零点;
(3)若f(x)+mx>1对一切的正实数x均成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2-2cosx
+
2-2cos(
3
-x)
,x∈[0,2π],则当x=
3
3
时,函数f(x)有最大值,最大值为
2
3
2
3

查看答案和解析>>

同步练习册答案