18.椭圆中.a.b.c的关系为----,离心率e=----,准线方程为----,焦点到相应准线距离为---- 双曲线中.a.b.c的关系为----,离心率e=----,准线方程为----,焦点到相应准线距离为---- 查看更多

 

题目列表(包括答案和解析)

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1,(a>b>0)
的左右顶点,F1是椭圆C的左焦点,|AF1|=2-
3
,离心率e=
3
2

(1)求椭圆C的方程;
(2)设P为椭圆C上异于A,B的任意一点,且PH⊥x轴,H为垂足,延长HP到点Q使得|HP|=|PQ|,连接AQ,并延长AQ交直线l:x=2于M点,N为MB中点,求
OQ
QN
的值,并判断以O为圆心,OQ为半径的圆与直线QN的位置关系.

查看答案和解析>>

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且

(1)求椭圆的方程;

(2)求动点C的轨迹E的方程;

(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

 

查看答案和解析>>

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

设椭圆的左右顶点分别为,离心率.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线AC(C点不同于A,B)与直线交于点R,D为线段RB的中点,试判断直线CD与曲线E的位置关系,并证明你的结论.

查看答案和解析>>

精英家教网已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
经过点(p,q),离心率e=
3
2
.其中p,q分别表示标准正态分布的期望值与标准差.
(1)求椭圆C的方程;
(2)设直线x=my+1与椭圆C交于A,B两点,点A关于x轴的对称点为A'.①试建立△AOB的面积关于m的函数关系;②莆田十中高三(1)班数学兴趣小组通过试验操作初步推断:“当m变化时,直线A'B与x轴交于一个定点”.你认为此推断是否正确?若正确,请写出定点坐标,并证明你的结论;若不正确,请说明理由.

查看答案和解析>>


同步练习册答案