一动圆与直线有公共点.且圆心(a,b)满足.则动圆面积最小时的半径r为 A B 1 C D 2 查看更多

 

题目列表(包括答案和解析)

一动圆与已知圆O1(x+2)2+y2=1外切,与圆O2(x-2)2+y2=49内切,
(1)求动圆圆心的轨迹方程C;
(2)已知点A(2,3),O(0,0)是否存在平行于OA的直线 l与曲线C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

一动圆与已知圆O1(x+2)2+y2=1外切,与圆O2(x-2)2+y2=49内切,
(1)求动圆圆心的轨迹方程C;
(2)已知点A(2,3),O(0,0)是否存在平行于OA的直线l与曲线C有公共点,且直线OA与l的距离等于4?若存在,求出直线l的方程;若不存在,说明理由.

查看答案和解析>>

设动圆P过点A(-1,0),且与圆B:x2+y2-2x-7=0相切.
(Ⅰ)求动圆圆心P的轨迹Ω的方程;
(Ⅱ)设点Q(m,n)在曲线Ω上,求证:直线l:mx+2ny=2与曲线Ω有唯一的公共点;
(Ⅲ)设(Ⅱ)中的直线l与圆B交于点E,F,求证:满足数学公式的点R必在圆B上.

查看答案和解析>>

设动圆P过点A(-1,0),且与圆B:x2+y2-2x-7=0相切.
(Ⅰ)求动圆圆心P的轨迹Ω的方程;
(Ⅱ)设点Q(m,n)在曲线Ω上,求证:直线l:mx+2ny=2与曲线Ω有唯一的公共点;
(Ⅲ)设(Ⅱ)中的直线l与圆B交于点E,F,求证:满足的点R必在圆B上.

查看答案和解析>>

如图,椭圆E:的左焦点为F1,右焦点为F2,离心率。过F1的直线交椭圆于A、B两点,且△ABF2的周长为8

(Ⅰ)求椭圆E的方程。

(Ⅱ)设动直线l:y=kx+m与椭圆E有且只有一个公共点P,且与直线x=4相较于点Q。试探究:在坐标平面内是否存在定点M,使得以PQ为直径的圆恒过点M?若存在,求出点M的坐标;若不存在,说明理由

【解析】

 

查看答案和解析>>


同步练习册答案