3.运用距离公式求出标准方程中的待定系数; 查看更多

 

题目列表(包括答案和解析)

在平面直角坐标系xoy中,已知曲线C1:x2+y2=1,以平面直角坐标系xoy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.

(Ⅰ)将曲线C1上的所有点的横坐标,纵坐标分别伸长为原来的、2倍后得到曲线C2,试写出直线l的直角坐标方程和曲线C2的参数方程.

(Ⅱ)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

【解析】(Ⅰ)根据极坐标与普通方程的互化,将直线l:ρ(2cosθ-sinθ)=6化为普通方程,C2的方程为,化为普通方程;(Ⅱ)利用点到直线的距离公式表示出距离,求最值.

 

查看答案和解析>>

下列语句中是算法的个数为(  )
①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎;
②统筹法中“烧水泡茶”的故事;
③测量某棵树的高度,判断其是否是大树;
④已知三角形的一部分边长和角,借助正余弦定理求得剩余的边角,再利用三角形的面积公式求出该三角形的面积.

查看答案和解析>>

下列说法正确的是(  )

查看答案和解析>>

精英家教网如图,在三棱锥S-ABC中,侧面SAB⊥底面ABC,且∠ASB=∠ABC=90°,AS=SB=2,AC=2
3


(Ⅰ)求证SA⊥SC;
(Ⅱ)在平面几何中,推导三角形内切圆的半径公式r=
2S
l
(其中l是三角形的周长,S是三角形的面积),常用如下方法(如右图):
①以内切圆的圆心O为顶点,将三角形ABC分割成三个小三角形:△OAB,△OAC,△OB精英家教网C.
②设△ABC三边长分别为a,b,c.由S△ABC=S△OBC+S△OAC+S△OAB
S=
1
2
ar+
1
2
br+
1
2
cr
=
1
2
lr
,则r=
2S
l

类比上述方法,请给出四面体内切球半径的计算公式(不要求说明类比过程),并利用该公式求出三棱锥S-ABC内切球的半径.

查看答案和解析>>

下列语句中是算法的个数为(    )

①从济南到巴黎:先从济南坐火车到北京,再坐飞机到巴黎  ②统筹法中“烧水泡茶”的故事  ③测量某棵树的高度,判断其是否是大树  ④已知三角形的一部分边长和角,借助正、余弦定理求得剩余的边和角,再利用三角形的面积公式求出该三角形的面积

A.1                  B.2                   C.3                   D.4

查看答案和解析>>


同步练习册答案