题目列表(包括答案和解析)
(本小题满分12分)
已知函数f(x)=alnx,(a∈R)g(x)=x2,记F(x)=g(x)-f(x)
(Ⅰ)判断F(x)的单调性;
(Ⅱ)当a≥时,若x≥1,求证:g(x-1)≥f();
(Ⅲ)若F(x)的极值为,问是否存在实数k,使方程g(x)-f(1+x2)=k有四个不同实数根?若存在,求出实数k的取值范围;若不存在,请说明理由。
(本小题满分12分)
已知函数
,
为实数)有极值,且在
处的切线与直线
平行.
(I)求实数a的取值范围;
(II)是否存在实数a,使得函数
的极小值为1,若存在,求出实数a的值;若不存
在,请说明理由;
(Ⅲ)设![]()
求证:
.
(本小题满分12分) 已知函数
,
为实数)有极值,且在
处的切线与直线
平行.
(I)求实数a的取值范围;
(II)是否存在实数a,使得函数
的极小值为1,若存在,求出实数a的值;若不存
在,请说明理由;
(Ⅲ)设![]()
求证:
.
(本小题满分12分)过抛物线
上不同两点A、B分别作抛物线的切线相交于P点,
(1)求点P的轨迹方程;(2)已知点F(0,1),是否存在实数
使得
?若存在,求出
的值,若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com