解:(1)点在轴上························································································· 1分 理由如下: 连接.如图所示.在中... . 由题意可知: 点在轴上.点在轴上.············································································ 3分 (2)过点作轴于点 . 在中.. 点在第一象限. 点的坐标为····························································································· 5分 由(1)知.点在轴的正半轴上 点的坐标为 点的坐标为······························································································· 6分 抛物线经过点. 由题意.将.代入中得 解得 所求抛物线表达式为:·························································· 9分 (3)存在符合条件的点.点.············································································ 10分 理由如下:矩形的面积 以为顶点的平行四边形面积为. 由题意可知为此平行四边形一边. 又 边上的高为2······································································································ 11分 依题意设点的坐标为 点在抛物线上 解得.. . 以为顶点的四边形是平行四边形. .. 当点的坐标为时. 点的坐标分别为., 当点的坐标为时. 点的坐标分别为..·················································· 14分 (以上答案仅供参考.如有其它做法.可参照给分) 查看更多

 

题目列表(包括答案和解析)

已知:如下图,在平面直角坐标系xOy中,矩形OABC的边OAy轴的正半轴上,OCx轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

阅读材料:如下图1,过△ABC的三个顶点分别作出与水平线垂直的三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”。我们可得出一种计算三角形面积的新方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半。
解答下列问题:如下图2,抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B。
(1)求抛物线和直线AB的解析式;
(2)点P是抛物线(在第一象限内)上的一个动点,连接PA,PB,当P点运动到顶点C时,求△CAB的铅垂高CD及S△CAB
(3)是否存在一点P,使S△PAB=S△CAB?若存在,求出P点的坐标;若不存在,请说明理由。

查看答案和解析>>

(2013•盐城模拟)如图(1),分别以两个彼此相邻的正方形OABC与CDEF的边OC、OA所在直线为x轴、y轴建立平面直角坐标系(O、C、F三点在x轴正半轴上).若⊙P过A、B、E三点(圆心在x轴上)交y轴于另一点Q,抛物线y=
14
x2+bx+c
经过A、C两点,与x轴的另一交点为G,M是FG的中点,B点坐标为(2,2).
(1)求抛物线的函数解析式和点E的坐标;
(2)求证:ME是⊙P的切线;
(3)如图(2),点R从正方形CDEF的顶点E出发以1个单位/秒的速度向点F运动,同时点S从点Q出发沿y轴以5个单位/秒的速度向上运动,连接RS,设运动时间为t秒(0<t<1),在运动过程中,正方形CDEF在直线RS下方部分的面积是否变化?若不变,说明理由并求出其值;若变化,请说明理由;

查看答案和解析>>

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-3),与x轴交于A、B两点,A(-1,0).

(1)求这条抛物线的解析式.

(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线对称轴交于点E,依次连接A、D、B、E,点P为线段AB上一个动点(P与A、B两点不重合),过点P作PM⊥AE于M,PN⊥DB于N,请判断是否为定值?若是,请求出此定值;若不是,请说明理由.

(3)在(2)的条件下,若点S是线段EP上一点,过点S作FG⊥EP,FG分别与边AE、BE相交于点F,G(F与A、E不重合,G与E、B不重合),请判断是否成立.若成立,请给出证明;若不成立,请说明理由.

查看答案和解析>>

已知:抛物线y=ax2+bx+c(a≠0),顶点C(1,-4),与x轴交于AB两点,A(-1,0).

(1)求这条抛物线的解析式;

(2)如图,以AB为直径作圆,与抛物线交于点D,与抛物线的对称轴交于点F,依次连接ADBE,点Q为线段AB上一个动点(QAB两点不重合),过点Q作QF⊥AE于F,QG⊥DB于G,请判断是否为定值;若是,请求出此定值,若不是,请说明理由;

(1)在(2)的条件下,若点H是线段EQ上一点,过点H作MN⊥EQ,MN分别与边AE、BE相交于M、N,(M与A、E不重合,N与E、B不重合),请判断是否成立;若成立,请给出证明,若不成立,请说明理由.

查看答案和解析>>


同步练习册答案