求值(1); (2)已知.求 解:(1).. 当n=4时.原式. 当n=5时.原式. (2)本题运用公式.将已知等式转化为关于m的一元二次方程.解方程并结合m的取值范围确定m的值.最后计算 解:m的取值范围为 由已知. 即 .解得m=21或m=2 但..舍去 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=lnx,g(x)=
3
2
-
a
x
(a为实常数)
(1)当a=1时,求函数φ(x)=f(x)-g(x)在x∈[4,+∞)上的最小值;
(2)若方程e2f(x)=g(x)(其中e=2.71828…)在区间[
1
2
,1]上有解,求实数a的取值范围;
(3)证明:
5
4
n+
1
60
n
k=1
[2f(2k+1)-f(k)-f(k+1)]<2n+1,n∈N*
(参考数据:ln2≈0.6931)

查看答案和解析>>

(理)已知函数f(x)=loga
x-1
x+1
(其中a>0且a≠1),g(x)是f(x)的反函数.
(1)已知关于x的方程loga
m
(x+1)(7-x)
=f(x)在区间[2,6]上有实数解,求实数m的取值范围;
(2)当o<a<1时,讨论函数f(x)的奇偶性和增减性;
(3)设a=
1
1+p
,其中p≥1.记bn=g(n),数列{bn}的前n项的和为Tn(n∈N*),求证:n<Tn<n+4.

查看答案和解析>>

定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.
(Ⅰ) 求证f(x)在R上是单调递增函数;
(Ⅱ)已知f(1)=5,解关于t的不等式f(|t2-t|)≤8;
(Ⅲ)若f(-2)=-4,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立.求实数a的取值范围.

查看答案和解析>>

定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.
(Ⅰ) 求证f(x)在R上是单调递增函数;
(Ⅱ)已知f(1)=5,解关于t的不等式f(|t2-t|)≤8;
(Ⅲ)若f(-2)=-4,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立.求实数a的取值范围.

查看答案和解析>>

定义在R上的函数f(x)满足:f(m+n)=f(m)+f(n)-2对任意m、n∈R恒成立,当x>0时,f(x)>2.
(Ⅰ) 求证f(x)在R上是单调递增函数;
(Ⅱ)已知f(1)=5,解关于t的不等式f(|t2-t|)≤8;
(Ⅲ)若f(-2)=-4,且不等式f(t2+at-a)≥-7对任意t∈[-2,2]恒成立.求实数a的取值范围.

查看答案和解析>>


同步练习册答案