已知函数的图象与x y轴分别相交于点A B.( 分别是与x y轴正半轴同方向的闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌涢锝嗙缁炬儳顭烽弻鏇熺箾閻愵剚鐝旂紒鐐劤閻忔繈鍩為幋锔藉亹鐎规洖娴傞弳锟犳⒑閹肩偛鈧洟鎮ц箛娑樼疅闁归棿鐒﹂崑瀣煕椤愶絿绠橀柣鐔村姂濮婅櫣绱掑Ο铏圭懆闂佽绻戝畝鍛婁繆閻㈢ǹ绀嬫い鏍ㄦ皑椤斿﹪姊虹憴鍕剹闁搞劑浜跺顐c偅閸愨晝鍘介柟鍏肩暘閸ㄥ宕弻銉︾厵闁告垯鍊栫€氾拷查看更多

 

题目列表(包括答案和解析)

已知函数的图象与x、y轴分别相交于点AB分别是与xy轴正半轴同方向的单位向量), 函数

(1) 求kb的值;

(2) 当x满足时,求函数的最小值。

查看答案和解析>>

已知函数的图象与x、y轴分别相交于点A、B、

(1)求

(2)当

查看答案和解析>>

已知函数的图象与y轴交点的纵坐标为1,在相邻的两点(x0,2),上f(x)分别取得最大值和最小值.

(1)求f(x)的解析式;

(2)若函数g(x)=af(x)+b的最大和最小值分别为6和2,求a,b的值.

查看答案和解析>>

已知函数y=kx与y=x2+2(x≥0)的图象相交于A(x1,y1),B(x2,y2),l1,l2分别是y=x2+2(x≥0)的图象在A,B两点的切线,M,N分别是l1,l2与x轴的交点.
(I)求k的取值范围;
(II)设t为点M的横坐标,当x1<x2时,写出t以x1为自变量的函数式,并求其定义域和值域;
(III)试比较|OM|与|ON|的大小,并说明理由(O是坐标原点).

查看答案和解析>>

已知函数f(x)=lnx,g(x)=(m+1)x2-x(m≠-1).
(I)若函数y=f(x)与y=g(x)的图象在公共点P处有相同的切线,求实数m的值和P的坐标;
(II)若函数y=f(x)与y=g(x)的图象有两个不同的交点M、N,求实数m的取值范围;
(III)在(II)的条件下,过线段MN的中点作x轴的垂线分别与f(x)的图象和g(x)的图象交于S、T点,以S点为切点
作f(x)的切线l1,以T为切点作g(x)的切线l2,是否存在实数m,使得l1∥l2?如果存在,求出m的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案
闂傚倸鍊搁崐鎼佸磹閹间礁纾归柣鎴eГ閸ゅ嫰鏌ら崫銉︽毄濞寸姵鑹鹃埞鎴炲箠闁稿﹥顨嗛幈銊р偓闈涙啞瀹曞弶鎱ㄥ璇蹭壕闂佺粯渚楅崰娑氱不濞戞ǚ妲堟繛鍡樺姈椤忕喖姊绘担鑺ョ《闁革綇绠撻獮蹇涙晸閿燂拷 闂傚倸鍊搁崐鎼佸磹閹间礁纾归柟闂寸绾惧綊鏌熼梻瀵割槮缁炬儳缍婇弻鐔兼⒒鐎靛壊妲紒鐐礃椤曆囧煘閹达附鍋愰柛娆忣槹閹瑧绱撴担鍝勵€岄柛銊ョ埣瀵濡搁埡鍌氫簽闂佺ǹ鏈粙鎴︻敂閿燂拷