数列是等比数列. 4分 查看更多

 

题目列表(包括答案和解析)

等比数列{an}中,a1,a2,a3分别是下表第一、二、三行中的某一个数,且a1,a2,a3中的任何两个数不在下表的同一列,
 
第一列
第二列
第三列
第一行
3
2
10
第二行
6
4
14
第三行
9
8
18
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)若数列{bn}满足:bn=an+(-1)lnan,求数列{bn}的前2n项和S2n

查看答案和解析>>

等比数列中,分别是下表第一、二、三行中的某一个数,且中的任何两个数不在下表的同一列

 

第一列

第二列

第三列

第一行

3

2

10

第二行

6

4

14

第三行

9

8

18

(Ⅰ)求数列的通项公式。

(Ⅱ)若数列满足:,求数列

 

查看答案和解析>>

一个等比数列的第3项与第4项分别是12与18,则它的第1项是--______,第2项是    

查看答案和解析>>

在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足,求{cn}的前n项和Tn.

【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,,可得,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1.     第二问中,,由第一问中知道,然后利用裂项求和得到Tn.

解: (Ⅰ) 设:{an}的公差为d,

因为解得q=3或q=-4(舍),d=3.

故an=3+3(n-1)=3n, bn=3 n-1.                       ………6分

(Ⅱ)因为……………8分

 

查看答案和解析>>

已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项。

①求数列的通项公式;

②设数列均有成立,求+

 

查看答案和解析>>


同步练习册答案