对含有两个绝对值的不等式如何去解? (找零点.分段讨论.去掉绝对值符号.最后取各段的并集.) 证明: 查看更多

 

题目列表(包括答案和解析)

16、设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意a,b∈S,给出下列关系式:①(a*b)*a=a; ②[a*(b*a)]*(a*b)=a;③b*(b*b)=b; ④(a*b)*[b*(a*b)]=b,其中正确命题的序号是
②③④
(写出所有正确命题的序号).

查看答案和解析>>

设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对于任意的a,b∈S,有a*( b*a)=b,则对任意的a,b∈S,下列等式中不能成立的是(  )

查看答案和解析>>

(2008•虹口区二模)设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式:①b*(b*b)=b   ②(a*b)*[b*(a*b)]=b   ③(a*b)*a=a中,恒成立的是
①②
①②
(写出序号)

查看答案和解析>>

设S是至少含有两个元素的集合,在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).已知对任意的a,b∈S,有a*(b*a)=b;则对任意的a,b∈S,给出下面四个等式:
(1)(a*b)*a=a  (2)[a*(b*a)]*(a*b)=a   (3)b*(a*b)=a  (4)(a*b)*[b*(a*b)]=b  
上面等式中恒成立的有(  )

查看答案和解析>>

设S是至少含有两个元素的集合.在S上定义了一个二元运算“*”(即对任意的a,b∈S,对于有序元素对(a,b),在S中有唯一确定的元素a*b与之对应).若对于任意的a,b∈S,有a*(b*a)=b,则对任意的a,b∈S,下列等式中不能成立的是(  )

查看答案和解析>>


同步练习册答案