已知f(x)=. 在内单调递增, 在内单调递减.求a的取值范围. (1)证明 任设x1<x2<-2,则f(x1)-f(x2)= ∵(x1+2)(x2+2)>0,x1-x2<0,∴f(x1)<f(x2),∴f内单调递增. (2)解 任设1<x1<x2,则 f(x1)-f(x2)= ∵a>0,x2-x1>0,∴要使f(x1)-f(x2)>0,只需(x1-a)(x2-a)>0恒成立. ∴a≤1.综上所述知0<a≤1. 查看更多

 

题目列表(包括答案和解析)

已知f(x)=(x≠a).

(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;

(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.

查看答案和解析>>

已知f(x)=(x≠a).

(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;

(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.

查看答案和解析>>

已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)上单调递增.
(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)上单调递增.
(2)若a>0且f(x)在(1,+∞)上单调递减,求a的取值范围.

查看答案和解析>>

已知f(x)=(x≠a).
(1)若a=-2,试证f(x)在(-∞,-2)内单调递增;
(2)若a>0且f(x)在(1,+∞)内单调递减,求a的取值范围.

查看答案和解析>>


同步练习册答案