平面向量加法的平行四边形法则向空间的推广 始点相同且不在同一个平面内的三个向量之和.等于以这三个向量为棱的平行六面体的以公共始点为始点的对角线所表示的向量. 查看更多

 

题目列表(包括答案和解析)

什么是向量加法的平行四边形法则?

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
?
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
?
b
=0
;(2)
a
?
b
=
b
?
a
;(3)对任意的λ∈R,有
a
)?
b
=λ(
a
?
b
)
;(4)(
a
*
b
2
+(
a
b
2
=|
a
|2?|
b
|2
.(注:这里
a
?
b
a
b
的数量积)其中所有真命题的序号是
 

查看答案和解析>>

定义平面向量之间的一种运算“*”如下:对任意的
a
=(m,n),
b
=(p,q)
,令
a
*
b
=mq-np
.给出以下四个命题:(1)若
a
b
共线,则
a
*
b
=0
;(2)
a
*
b
=
b
*
a
;(3)对任意的λ∈R,有
a
)*
b
=λ(
a
*
b
)
(4)(
a
*
b
)2+(
a
b
)2=|
a
|2•|
b
|2
.(注:这里
a
b
a
b
的数量积)则其中所有真命题的序号是(  )
A、(1)(2)(3)
B、(2)(3)(4)
C、(1)(3)(4)
D、(1)(2)(4)

查看答案和解析>>

下面给出了关于复数的四种类比推理:
①复数的加减法运算可以类比多项式的加减法运算法则;
②由向量a的性质|
a
|2=
a
2类比得到复数z的性质|z|2=z2
③方程ax2+bx+c=0(a,b,c⊆R)有两个不同实数根的条件是b2-4ac>0可以类比得到:方程az2+bz+c=0(a,b,c⊆C)有两个不同复数根的条件是b2-4ac>0;
④由向量加法的几何意义可以类比得到复数加法的几何意义.
其中类比错误的是
 

查看答案和解析>>

下面给出了关于复数的四种类比推理:

①复数的加减法运算可以类比多项式的加减法运算法则;

②由向量的性质类比得到复数的性质

③方程有两个不同实数根的条件是可以类比得到:方程有两个不同复数根的条件是

④由向量加法的几何意义可以类比得到复数加法的几何意义

其中类比得到的结论错误的是

A.①③             B.②④             C.②③             D.①④

 

查看答案和解析>>


同步练习册答案