2..∴ 当或时..当时. ∴函数在和上是增函数.在上是减函数. ∴当时.函数取得极大值. 当时.函数取得极小值. 说明:解题的成功要靠正确思路的选择.本题从逆向思维的角度出发.根据题设结构进行逆向联想.合理地实现了问题的转化.使抽象的问题具体化.在转化的过程中充分运用了已知条件确定了解题的大方向.可见出路在于“思想认识 .在求导之后.不会应用的隐含条件.因而造成了解决问题的最大思维障碍. 查看更多

 

题目列表(包括答案和解析)

已知,函数

(1)当时,求函数在点(1,)的切线方程;

(2)求函数在[-1,1]的极值;

(3)若在上至少存在一个实数x0,使>g(xo)成立,求正实数的取值范围。

【解析】本试题中导数在研究函数中的运用。(1)中,那么当时,  又    所以函数在点(1,)的切线方程为;(2)中令   有 

对a分类讨论,和得到极值。(3)中,设,依题意,只需那么可以解得。

解:(Ⅰ)∵  ∴

∴  当时,  又    

∴  函数在点(1,)的切线方程为 --------4分

(Ⅱ)令   有 

①         当

(-1,0)

0

(0,

,1)

+

0

0

+

极大值

极小值

的极大值是,极小值是

②         当时,在(-1,0)上递增,在(0,1)上递减,则的极大值为,无极小值。 

综上所述   时,极大值为,无极小值

时  极大值是,极小值是        ----------8分

(Ⅲ)设

求导,得

    

在区间上为增函数,则

依题意,只需,即 

解得  (舍去)

则正实数的取值范围是(

 

查看答案和解析>>

已知函数f(x)是定义在(-∞,0)∪(0,+∞)上的奇函数,当x>0时,f(x)=log2x
(1)求当x<0时,求函数f(x)的表达式
(2)若g(x)=2x(x∈R)集合A={x|f(x)≥2},B={x|g(x)≥16或
2
2
≤g(x)≤1
},试判断集合A和B的关系.

查看答案和解析>>

已知函数f(x)=log
1
3
x

(1)当x∈[
1
3
,3]
时,求f(x)的反函数g(x);
(2)求关于x的函数y=[g(x)]2-2ag(x)+3(a≤3)当x∈[-1.1]时的最小值h(a);
(3)我们把同时满足下列两个性质的函数称为“和谐函数”:
①函数在整个定义域上是单调增函数或单调减函数;
②在函数的定义域内存在区间[p,q](p<q)使得函数在区间[p,q]上的值域为[p2,q2].
(Ⅰ)判断(2)中h(x)是否为“和谐函数”?若是,求出p,q的值或关系式;若不是,请说明理由;
(Ⅱ)若关于x的函数y=
x2-1
+t(x≥1)是“和谐函数”,求实数t的取值范围.

查看答案和解析>>

已知函数f(x)=log2
x+1x-1
(x>1或x<-1),
(1)证明f(x)在(1,+∞)上是减函数;
(2)当x∈[3,5]时,求f(x)的最小值和最大值.

查看答案和解析>>

已知函数f1(x)=lg|x-p1|,f2(x)=lg(|x-p2|+2)(x∈R,p1,p2为常数)
函数f(x)定义为对每个给定的实数x(x≠p1),f(x)=
f1(x)f1(x)≤f2(x)
f2(x)f2(x)≤f1(x)

(1)当p1=2时,求证:y=f1(x)图象关于x=2对称;
(2)求f(x)=f1(x)对所有实数x(x≠p1)均成立的条件(用p1、p2表示);
(3)设a,b是两个实数,满足a<b,且p1,p2∈(a,b),若f(a)=f(b)求证:函数f(x)在区间[a,b]上单调增区间的长度之和为
b-a
2
.(区间[m,n]、(m,n)或(m,n]的长度均定义为n-m)

查看答案和解析>>


同步练习册答案