,则. 距离公式:. 查看更多

 

题目列表(包括答案和解析)

现有变换公式T:
4
5
x+
3
5
y=x′
3
5
x-
4
5
y=y′
可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为2
2
,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.

查看答案和解析>>

现有变换公式T:可把平面直角坐标系上的一点P(x,y)变换到这一平面上的一点P′(x′,y′).
(1)若椭圆C的中心为坐标原点,焦点在x轴上,且焦距为,长轴顶点和短轴顶点间的距离为2.求该椭圆C的标准方程,并求出其两个焦点F1、F2经变换公式T变换后得到的点F1和F2的坐标;
(2)若曲线M上一点P经变换公式T变换后得到的点P'与点P重合,则称点P是曲线M在变换T下的不动点.求(1)中的椭圆C在变换T下的所有不动点的坐标;
(3)在(2)的基础上,试探究:中心为坐标原点、对称轴为坐标轴的椭圆和双曲线在变换T下的不动点的存在情况和个数.

查看答案和解析>>

函数概念的发展历程

  17世纪,科学家们致力于运动的研究,如计算天体的位置,远距离航海中对经度和纬度的测量,炮弹的速度对于高度和射程的影响等.诸如此类的问题都需要探究两个变量之间的关系,并根据这种关系对事物的变化规律作出判断,如根据炮弹的速度推测它能达到的高度和射程.这正是函数产生和发展的背景.

  “function”一词最初由德国数学家莱布尼兹(G.W.Leibniz,1646~1716)在1692年使用.在中国,清代数学家李善兰(1811~1882)在1859年和英国传教士伟烈亚力合译的《代徽积拾级》中首次将“function”译做“函数”.

  莱布尼兹用“函数”表示随曲线的变化而改变的几何量,如坐标、切线等.1718年,他的学生,瑞士数学家约翰·伯努利(J.Bernoulli,1667~1748)强调函数要用公式表示.后来,数学家认为这不是判断函数的标准.只要一些变量变化,另一些变量随之变化就可以了.所以,1755年,瑞士数学家欧拉(L.Euler,1707~1783)将函数定义为“如果某些变量,以一种方式依赖于另一些变量,我们将前面的变量称为后面变量的函数”.

  当时很多数学家对于不用公式表示函数很不习惯,甚至抱怀疑态度.函数的概念仍然是比较模糊的.

  随着对微积分研究的深入,18世纪末19世纪初,人们对函数的认识向前推进了.德国数学家狄利克雷(P.G.L.Dirichlet,1805~1859)在1837年时提出:“如果对于x的每一个值,y总有一个完全确定的值与之对应,则y是x的函数”.这个定义较清楚地说明了函数的内涵.只要有一个法则,使得取值范围中的每一个值,有一个确定的y和它对应就行了,不管这个法则是公式、图象、表格还是其他形式.19世纪70年代以后,随着集合概念的出现,函数概念又进而用更加严谨的集合和对应语言表述,这就是本节学习的函数概念.

  综上所述可知,函数概念的发展与生产、生活以及科学技术的实际需要紧密相关,而且随着研究的深入,函数概念不断得到严谨化、精确化的表达,这与我们学习函数的过程是一样的.

你能以函数概念的发展为背景,谈谈从初中到高中学习函数概念的体会吗?

1.探寻科学家发现问题的过程,对指导我们的学习有什么现实意义?

2.莱布尼兹、狄利克雷等科学家有哪些品质值得我们学习?

查看答案和解析>>

球放在墙角(两墙面,地面分别两两垂直),紧靠墙面和底面,墙角顶点到球面上的点的最远距离是
3
+1
,则球的体积是
3
3
.(半径为R的球体积公式:V=
4
3
πR3

查看答案和解析>>

球放在墙角(两墙面,地面分别两两垂直),紧靠墙面和底面,墙角顶点到球面上的点的最远距离是
3
+1
,则球的体积是______.(半径为R的球体积公式:V=
4
3
πR3

查看答案和解析>>


同步练习册答案