1.理解平面向量的坐标概念; 查看更多

 

题目列表(包括答案和解析)

平面向量的坐标运算律有哪些?

查看答案和解析>>

我们学过平面向量(二维向量)),空间向量(三位向量),二维、三维向量的坐标表示及其运算可以推广到n(n≥3)维向量.n维向量可用 (x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),设
b
=(b1,b2,b3,b4,…,bn),a与b夹角θ的余弦值为cosθ=
a1b1+a2b2+…+anbn
a
2
1
+
a
2
2
+…+
a
2
n
b
2
1
+
b
2
2
+…+
b
2
n
.当两个n维向量,
a
=(1,1,1,…,1),
b
=(-1,-1,1,1,…,1)时,cosθ=(  )
A、
n-1
n
B、
n-2
n
C、
n-3
n
D、
n-4
n

查看答案和解析>>

设平面α内两个向量的坐标分别为(1,2,1)、(-1,1,2),则下列向量中是平面的法向量的是(  )

查看答案和解析>>

平面向量也叫二维向量,二维向量的坐标表示及其运算可以推广到n(n≥3)维向量,n维向量可用(x1,x2,x3,x4,…,xn)表示.设
a
=(a1,a2,a3,a4,…,an),
b
=(b1,b2,b3,b4,…,bn),规定向量
a
b
夹角θ的余弦为cosθ=
n
i=1
aibi
(
n
i=1
a
2
i
)(
n
i=1
b
2
i
)
.已知n维向量
a
b
,当
a
=(1,1,1,1,…,1),
b
=(-1,-1,1,1,1,…,1)时,cosθ等于
n-4
n
n-4
n

查看答案和解析>>

已知平面向量的集合A到B的映射f为f(
x
)=
x
-2(
x
a
a
,其中
a
为常向量,若映射f满足f(
x
)•f(
y
)=
x
y
对任意
x
y
∈A恒成立,则
a
用坐标可能是(  )

查看答案和解析>>


同步练习册答案