已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为和,椭圆G上一点到和的距离之和为12.圆:的圆心为点. (1)求椭圆G的方程 (2)求的面积 (3)问是否存在圆包围椭圆G?请说明理由. [解析](1)设椭圆G的方程为: ()半焦距为c; 则 , 解得 , 所求椭圆G的方程为:. 21世纪教育网 (2 )点的坐标为 (3)若.由可知点(6.0)在圆外. 若.由可知点在圆外, 不论K为何值圆都不能包围椭圆G. 查看更多

 

题目列表(包括答案和解析)

(2009年广东卷文)(本小题满分14分)

已知椭圆G的中心在坐标原点,长轴在轴上,离心率为,两个焦点分别为,椭圆G上一点到的距离之和为12.圆:的圆心为点.

(1)求椭圆G的方程

(2)求的面积

(3)问是否存在圆包围椭圆G?请说明理由.

查看答案和解析>>

(2009年广东卷文)(本小题满分14分)

已知点(1,)是函数)的图象上一点,等比数列的前项和为,数列的首项为,且前项和满足=+).

(1)求数列的通项公式;

(2)若数列{项和为,问>的最小正整数是多少?

查看答案和解析>>

(2009年广东卷文)(本小题满分14分)

已知二次函数的导函数的图像与直线平行,且=-1处取得最小值m-1(m).设函数

(1)若曲线上的点P到点Q(0,2)的距离的最小值为,求m的值

(2) 如何取值时,函数存在零点,并求出零点.

查看答案和解析>>


同步练习册答案