设两质点和同时从同一地点沿同一方向作直线运动,其运动速度分别为,和,如图所示,用表示在时刻两质点的距离.则的图象大致为 A. B C. D. 查看更多

 

题目列表(包括答案和解析)

如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客同时从A处下山,甲沿AC匀速步行,速度为50m/min.乙从A乘缆车到B,在B处停留1min后,再匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=
12
13
,cosC=
3
5

(1)求索道AB的长;
(2)为使乙游客在C处赶在甲游客前面先到达,乙步行的速度至少应为多少?(结果保留到个位)

查看答案和解析>>

例2:如图:△ABC是边长为3厘米的正三角形,D是BC边上靠近点B的三等分点,甲、乙两个质点分别从点A、D同时出发,都以1厘米/秒的速度按图示方向沿三角形的边作匀速运动,经过时间t(0≤t≤3)秒后,两质点的距离为S(t).
(1)写出函数S(t)
(2)求S(t)的最大值和最小值,并求取得最大值、最小值时相应的t的值.

查看答案和解析>>

(2012•江西)如图,|OA|=2(单位:m),OB=1(单位:m),OA与OB的夹角为
π
6
,以A为圆心,AB为半径作圆弧
BDC
与线段OA延长线交与点C.甲、乙两质点同时从点O出发,甲先以速度1(单位:m/s)沿线段OB行至点B,再以速度3(单位:m/s)沿圆弧
BDC
行至点C后停止;乙以速率2(单位:m/s)沿线段OA行至A点后停止.设t时刻甲、乙所到的两点连线与它们经过的路径所围成图形的面积为S(t)(S(0)=0),则函数y=S(t)的图象大致是(  )

查看答案和解析>>

直线x+
3
y
-2=0与圆x2+y2=4相交于C1的圆心为(3,0),且经过点A(4,1).
(1)求圆C1的方程;
(2)若圆C2与圆C1关于直线l对称,点B、D分别为圆C1、C2上任意一点,求|BD|的最小值;
(3)已知直线l上一点M在第一象限,两质点P、Q同时从原点出发,点P以每秒1个单位的速度沿x轴正方向运动,点Q以每秒2
2
个单位沿射线OM方向运动,设运动时间为t秒.问:当t为何值时直线PQ与圆C1相切?

查看答案和解析>>

设有半径为3km的圆形村落,A、B两人同时从村落中心出发.B一直向北直行;A先向东直行,出村后一段时间,改变前进方向,沿着与村落边界相切的直线朝B所在的方向前进.
(1)若A在距离中心5km的地方改变方向,建立适当坐标系,求:A改变方向后前进路径所在直线的方程
(2)设A、B两人速度一定,其速度比为3:1,且后来A恰与B相遇.问两人在何处相遇?(以村落中心为参照,说明方位和距离)

查看答案和解析>>


同步练习册答案