[解] :(1)f(x)= =−cos2x+sinxcosx -------2分 =sin2x−cos2x− ----------4分 =sin(2x−)− ----------6分 ∵x∈[0.π].∴当x=时.f(x)max=1−= ---8分 (2)此时x= ,设向量夹角为 则cos=----9分 === ----------11分 所以 向量夹角为 ------12分 查看更多

 

题目列表(包括答案和解析)

(2013•沈阳二模)选修4-5:不等式选讲
已知函数f(x)=|x-1|.
(1)解不等式:1≤f(x)+f(x-1)≤2;
(2)若a>0,求证:f(ax)-af(x)≤f(a).

查看答案和解析>>

选修4-5:不等式选讲
已知函数f(x)=|x-1|.
(1)解不等式:1≤f(x)+f(x-1)≤2;
(2)若a>0,求证:f(ax)-af(x)≤f(a).

查看答案和解析>>

已知函数f(x)=alnx-x2+1.

(1)若曲线y=f(x)在x=1处的切线方程为4x-y+b=0,求实数a和b的值;

(2)若a<0,且对任意x1、x2∈(0,+∞),都|f(x1)-f(x2)|≥|x1-x2|,求a的取值范围.

【解析】第一问中利用f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

第二问中,利用当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1

即f(x1)+x1≥f(x2)+x2,结合构造函数和导数的知识来解得。

(1)f′(x)=-2x(x>0),f′(1)=a-2,又f(1)=0,所以曲线y=f(x)在x=1处的切线方程为y=(a-2)(x-1),即(a-2)x-y+2-a=0,

由已知得a-2=4,2-a=b,所以a=6,b=-4.

(2)当a<0时,f′(x)<0,∴f(x)在(0,+∞)上是减函数,

不妨设0<x1≤x2,则|f(x1)-f(x2)|=f(x1)-f(x2),|x1-x2|=x2-x1

∴|f(x1)-f(x2)|≥|x1-x2|等价于f(x1)-f(x2)≥x2-x1,即f(x1)+x1≥f(x2)+x2

令g(x)=f(x)+x=alnx-x2+x+1,g(x)在(0,+∞)上是减函数,

∵g′(x)=-2x+1=(x>0),

∴-2x2+x+a≤0在x>0时恒成立,

∴1+8a≤0,a≤-,又a<0,

∴a的取值范围是

 

查看答案和解析>>

若函数f(x)=logax(a为常数且a>0,a≠1)满足f(
2
a
)>f(
3
a
),则f(1-
1
x
)
>1的解集是
1<x<
1
1-a
1<x<
1
1-a

查看答案和解析>>

已知定义域为R的函数f(x)=
b•2x+12x+1+a
是奇函数.
(Ⅰ)求a,b的值;
(Ⅱ)解关于t不等式f(k•t2-t)+f(1-k•t)<0.

查看答案和解析>>


同步练习册答案