(2)已知f()=3.且(0, ).求的值. 查看更多

 

题目列表(包括答案和解析)

已知f(x)是定义在(0,+∞)上的单调递增函数,且对定义域内任意x,y都有:f(x·y)=f(x)+f(y),且f(2)=1,求使不等式f(1)+f(x-3)≤2成立的x的取值范围。

查看答案和解析>>

已知f(x)是定义在R上的偶函数,且x≥0时,
(1)求f(0),f(-1);
(2)求函数f(x)的表达式;
(3)若f(a-1)-f(3-a)<0,求a的取值范围。

查看答案和解析>>

已知f(x)=ax2+2x,g(x)=lnx,
(1)求函数y=xg(x)-2x的单调区间;
(2)如果y=f(x)在[1,+∞)上是增函数,求a的取值范围;
(3)是否存在a>0,使方程=f′(x)-(2a+1)在区间内有且只有两个不相等的实数根,若存在求出a的取值范围,不存在说明理由。

查看答案和解析>>

已知f(x)是定义在[-1,1]上的奇函数,且f(1)=1,若a,b∈[-1,1],a+b≠0时,都有
(1)证明:函数f(x)在[-1,1]上是增函数;
(2)解不等式:
(3)若f(x)≤m2-2pm+1对所有x∈[-1,1],任意p∈[-1,1]恒成立,求实数m的取值范围。

查看答案和解析>>

已知二次函数f(x)的二次项系数为a,且不等式f(x)>-2x的解集为(1,3)。
(1)若方程f(x)+6a=0有两个相等的实数根,求f(x)的解析式;
(2)若f(x)的最大值为正数,求a的取值范围.

查看答案和解析>>

必修

一、填空题

1、8  2、  3、2|P|  4、  5、向左移,在把各点的横坐标伸长到原来的3倍

6、18  7、120度  8、  9、  10、②④  11、  12、  13、  14、

二、解答题

15.解:(Ⅰ).………… 4分

,得

∴函数的单调增区间为 .………… 7分

(Ⅱ)由,得

.            ………………………………………… 10分

,或

. 

,∴.     …………………………………………… 14分

16.解:(Ⅰ)n≥2时,.     ………………… 4分

n=1时,,适合上式,

.               ………………… 5分

(Ⅱ).          ………………… 8分

∴数列是首项为4、公比为2的等比数列.   ………………… 10分

,∴.……………… 12分

Tn.            ………………… 14分

17、⑴    ⑵        ⑶不能

18、⑴

=1时,的最大值为20200,=10时,的最小值为12100。

19、⑴易知AB恒过椭圆的右焦点F(,0)    ⑵ S=       ⑶存在

20、⑴

⑶(

附加题选修参考答案

1、⑴BB=  , ⑵  

2、⑴    ⑵  ,  ,EX=1

3、   

4、⑴    ⑵ MN=2 

5、⑴特征值为2和3 ,对应的特征向量分别为

,椭圆在矩阵的作用下对应得新方程为

6、提示:,然后用基本不等式或柯西不等式即可。

 

 


同步练习册答案