4.应用: (1)天体质量M.密度ρ的估算: 测出卫星绕天体做匀速圆周运动的半径r和周期T.由得M=.ρ .R为天体的半径. 当卫星沿天体表面绕天体运行时.r=R.则ρ= . (2)发现未知天体 知识点一万有引力定律的适用条件 万有引力定律适用于计算质点间的引力.具体有以下两种情况:①两物体间的距离远远大于物体本身的线度.两物体可视为质点.例如行星绕太阳的旋转,②两个均匀的球体间.其距离为两球心的距离. [应用1]如图所示.阴影区域是质量为M.半径为R的球体挖去一个小圆球后的剩余部分.所挖去的小圆球的球心o′和大球体球心间的距离是R/2.求球体剩余部分对球体外离球心o距离为2R.质量为m的质点P的引力. 导示: 将挖去的球补上.则完整的大球对球外质点P的引力: 半径为R/2的小球的质量 补上的小球对质点P的引力 因而挖去小球的阴影部分对P质点的引力 答案: 万有引力定律只适用于两个质点间的作用.只有对均匀球体.才可将其看作是质量全部集中在球心的一个质点. 知识点二万有引力与重力的关系 地面附近的物体由于受到地球的吸引而产生的力叫做重力.对于放在地面上的物体从效果上讲.万有引力使物体压紧地面的力就是我们所说的重力.由此可以看出重力是由于万有引力产生的.但严格地讲物体的重力并不等于地球对物体的万有引力.因为地球围绕地轴自转.地球表面上的物体就随地球在围绕地轴做匀速圆周运动.而所需的向心力也是由万有引力来提供.因而重力只是地球对物体万有引力的一个分力.另一个分力提供物体绕地轴做圆周运动的向心力.如图所示.因为地球上的所有物体的角速度相同.所以物体随地球做圆周运动的向心力F向=mω2r随纬度变化而变化.从赤道到两极不断减小.在赤道处.物体的万有引力F以及分解的向心力F向和重力mg刚好在一条直线上.有F=F向+mg.所以mg=F-F向=.因为地球自转角速度ω自很小.即:所以认为万有引力等于重力即(一般情况下不考虑自转带来的影响),但是假设自转加快.即ω自变大.由mg=F-F向= 知物体的重力将变小.当的时候.万有引力全部充当向心力.即不再有挤压地面的效果.亦即mg=0.也就没有重力一说了. [应用2]地球赤道上有一物体随地球一起自转做圆周运动.所受的向心力是F1.向心加速度为a1.线速度为v1.角速度为ω1,绕地球表面附近做圆周运动的人造卫星所受的向心力为F2.向心加速度为a2.线速度为v2.角速度为ω2,地球同步卫星所受的向心力为F3.向心加速度为a3.线速度为v3.角速度为ω3,地球表面重力加速度为g.第一宇宙速度为v.假设三者质量相等.则 ( ) A.F1=F2>F3 B.a1=a2=g>a3 C.v1=v2=v>v3 D.ω1=ω3<ω2 导示: 题中涉及三个物体.要比较三者有关物理量.可以通过同步卫星作为桥梁.首先比较随地球自转的物体与同步卫星.随地球一起自转物体向心加速度为a1=ω12R.线速度为v1=ω1R.所需向心力为F1=mω12R.地球的同步卫星的向心加速度a3=ω32r.线速度v3=ω3r.所需向心力F3=mω32r.因为r>R.ω1=ω3.所以a1< a3.v1 <v3.F1<F3,再比较 近地卫星和同步卫星.两者均是万有引力提供向心力.即F向=.同步卫星的轨道半径大于近地卫星的轨道半径.所以F2>F3.根据a=F向/m可得a2=g >a3.又由a=ω2r可知ω3<ω2.而近地卫星的线速度等于第一宇宙速度.即v2=v. 综上所述: F2>F3>F1. a2=g>a3>a1. v2=v>v3 >v1.ω1=ω3<ω2 答案:D 处理该类问题需要区分是地球上随地球一起自转的物体还是绕地球转动的人造卫星.如果是前者则是万有引力的一部分提供向心力.如果是后者则是万有引力提供向心力. 类型一天体质量和密度的计算 [例1]宇航员在月球表面附近自h高处以初速度v0水平抛出一个小球.测出小球的水平射程为L.已知月球半径为R.若在月球上发射一颗卫星.使它在月球表面附近绕月球作圆周运动.若万有引力恒量为G.求: (1)该卫星的周期, (2)月球的质量. 导示: (1)设月球表面附近的重力加速度为g月 对做平抛的小球: 竖直方向 ① 水平方向 L=v0t ② ③ 由①②③解得T = (2)由①②解得: 又: 解得: 计算天体质量的方法 (1)利用天体表面的重力加速度g和天体半径R. 故M=gR2/G (2)利用环绕天体:应知环绕天体的周期T和卫星的轨道半径r 得M= 类型二双星问题 两颗靠得很近且间距不变.绕同一中心做匀速圆周运动的星称为双星.解决双星问题应该从两点入手:第一.两星之间的万有引力提供了它们做匀速圆周运动的向心力,第二.两星绕同一点做圆周运动.且它们的角速度相等. [例2]在天体运动中.将两颗彼此距离较近.且相互绕行的行星称为双星.已知两行星质量分别为M1和M2.它们之间距离为L.求各自运转半径和角速度为多少? 导示:双星之间有相互吸引力而保持距离不变.则这两行星一定绕着两物体连线上某点做匀速圆周运动.设该点为o.如图所示.MloM2始终在一直线.Ml和M2角速度相等.它们之间万有引力提供向心力. 对M1: 对M2: 联立得: ω= 双星问题中.万有引力表达式中的r应该是两星之间的距离.而不是轨道半径.这一点特别需要引起注意. 类型三比值类问题 [例3]土星周围有许多大小不等的岩石颗粒.其绕土星的运动可视为圆周运动.其中有两个岩石颗粒A和B与土星中心距离分别为rA=8.0×104 km和rB=1.2×105 km.忽略所有岩石颗粒间的相互作用. (1)求岩石颗粒A和B的线速度之比, (2)求岩石颗粒A和B的周期之比, (3)土星探测器上有一物体.在地球上重为10 N.推算出他在距土星中心3.2×105 km处受到土星的引力为0.38 N.已知地球半径为6.4×103 km.请估算土星质量是地球质量的多少倍? 导示: (1)设土星质量为M0.颗粒质量为m.颗粒距土星中心距离为r.线速度为v.根据牛顿第二定律和万有引力定律: 解得: 对于A.B两颗粒分别有: 和 得: (2)设颗粒绕土星作圆周运动的周期为T.则: T=2πr/v 对于A.B两颗粒分别有: 和 得: (3)设地球质量为M.地球半径为r0.地球上物体的重力可视为万有引力.探测器上物体质量为m0.在地球表面重力为G0.距土星中心r0/=3.2×105 km处的引力为G0/.根据万有引力定律: 和 解得:M0/M=95 比值类问题是天体运动这一章较为常见的题型.这类问题具有一个较为明显特征:题目常会出现两组天体系统.而且遵循相同的规律.求解该类问题只需找出某组系统的规律就行.同理可得另外一组的规律.然后再利用比例关系求解. 查看更多

 

题目列表(包括答案和解析)

选做题
选做题
:请从A、B和C三小题中选定两小题作答.若三题都做,则按A、B两题评分
A.(适合选修3-3的考生)如图所示,有一个固定在水平桌面上的汽缸,内部密闭了质量为m的某种理想气体.
(1)如果这种理想气体的摩尔质量为M,阿伏伽德罗常数为N,则汽缸中气体分子数:n=
m
M
N
m
M
N

(2)现向右推动活塞,将气体压缩.则下列说法正确的是
BC
BC

A.压缩气体过程中外界对气体做了功,气体的内能一定增加.
B.气体被压缩前后,如果气体的温度保持不变,则气体一定放出热量.
C.如果汽缸壁和活塞是绝热的,气体被压缩后温度一定升高
D.气体被压缩的过程中,气体分子间的距离变小了,所以分子的势能变大了.
(3)有一个同学对汽缸加热使气体温度升高,为保持气体体积不变,需要增大压力.发现增大的压力与升高的温度成正比.请你解释这个现象.
B.(适合选修3-4模块的考生)(12分)如图所示,在平面镜附近有一个单色点光源S.
(1)在图中画出点光源S经过平面镜所成的象.
(2)下列说法正确的是
ACD
ACD

A.光屏上能看到明暗相间的条纹
B.如果在点光源S与光屏之间放入一个三棱镜,将会在光屏上看到彩色的光带
C.当观察者高速远离点光源时,发现光的波长变长
D.透过两个偏振片观察光源,转动其中一块偏振片时,发现光的强度发生变化,说明光波是横波
(3)要使光屏上明暗相间的条纹变宽,可以采用什么方法?
C.(适合选修3-5模块的考生)(12分)静止的铀238核(质量为mU)发生α衰变,放出一个α粒子(质量为mα)后生成一个新原子核钍(质量为mT).
(1)完成上述核反应方程式:92238U→
90
90
234
234
Th+24He
(2)列关于天然放射现象的说法中正确的是
AC
AC

A.一个铀238发生α衰变放出的能量为:E=(mU-mT-mα)c2
B.衰变过程中放出的能量等于原子核的结合能
C.天然放射性元素发出的射线引入磁场,α粒子和β粒子向相反方向偏转,说明它们带异种电荷.
D.铀238衰变为钍的半衰期是4.5×109年,10克铀238要经过9×109年才能全部衰变掉                         
(3)若测得铀238核发生α衰变时放出的α粒子的动能为E,试估算形成的钍核的反冲速度的大小.

查看答案和解析>>

______:请从A、B和C三小题中选定两小题作答.若三题都做,则按A、B两题评分
A.(适合选修3-3的考生)如图所示,有一个固定在水平桌面上的汽缸,内部密闭了质量为m的某种理想气体.
(1)如果这种理想气体的摩尔质量为M,阿伏伽德罗常数为N,则汽缸中气体分子数:n=______.
(2)现向右推动活塞,将气体压缩.则下列说法正确的是______
A.压缩气体过程中外界对气体做了功,气体的内能一定增加.
B.气体被压缩前后,如果气体的温度保持不变,则气体一定放出热量.
C.如果汽缸壁和活塞是绝热的,气体被压缩后温度一定升高
D.气体被压缩的过程中,气体分子间的距离变小了,所以分子的势能变大了.
(3)有一个同学对汽缸加热使气体温度升高,为保持气体体积不变,需要增大压力.发现增大的压力与升高的温度成正比.请你解释这个现象.
B.(适合选修3-4模块的考生)(12分)如图所示,在平面镜附近有一个单色点光源S.
(1)在图中画出点光源S经过平面镜所成的象.
(2)下列说法正确的是______
A.光屏上能看到明暗相间的条纹
B.如果在点光源S与光屏之间放入一个三棱镜,将会在光屏上看到彩色的光带
C.当观察者高速远离点光源时,发现光的波长变长
D.透过两个偏振片观察光源,转动其中一块偏振片时,发现光的强度发生变化,说明光波是横波
(3)要使光屏上明暗相间的条纹变宽,可以采用什么方法?
C.(适合选修3-5模块的考生)(12分)静止的铀238核(质量为mU)发生α衰变,放出一个α粒子(质量为mα)后生成一个新原子核钍(质量为mT).
(1)完成上述核反应方程式:92238U→____________Th+24He
(2)列关于天然放射现象的说法中正确的是______
A.一个铀238发生α衰变放出的能量为:E=(mU-mT-mα)c2
B.衰变过程中放出的能量等于原子核的结合能
C.天然放射性元素发出的射线引入磁场,α粒子和β粒子向相反方向偏转,说明它们带异种电荷.
D.铀238衰变为钍的半衰期是4.5×109年,10克铀238要经过9×109年才能全部衰变掉                         
(3)若测得铀238核发生α衰变时放出的α粒子的动能为E,试估算形成的钍核的反冲速度的大小.

查看答案和解析>>

第Ⅰ卷(选择题 共31分)

一、单项选择题.本题共5小题,每小题3分,共计15分.每小题只有一个选项符合题意.

1. 关于科学家和他们的贡献,下列说法中正确的是[来源:Www..com]

A.安培首先发现了电流的磁效应

B.伽利略认为自由落体运动是速度随位移均匀变化的运动

C.牛顿发现了万有引力定律,并计算出太阳与地球间引力的大小

D.法拉第提出了电场的观点,说明处于电场中电荷所受到的力是电场给予的

2.如图为一种主动式光控报警器原理图,图中R1R2为光敏电阻,R3R4为定值电阻.当射向光敏电阻R1R2的任何一束光线被遮挡时,都会引起警铃发声,则图中虚线框内的电路是

A.与门                  B.或门               C.或非门                  D.与非门

 


3.如图所示的交流电路中,理想变压器原线圈输入电压为U1,输入功率为P1,输出功率为P2,各交流电表均为理想电表.当滑动变阻器R的滑动头向下移动时

A.灯L变亮                                    B.各个电表读数均变大

C.因为U1不变,所以P1不变                              D.P1变大,且始终有P1= P2

4.竖直平面内光滑圆轨道外侧,一小球以某一水平速度v0A点出发沿圆轨道运动,至B点时脱离轨道,最终落在水平面上的C点,不计空气阻力.下列说法中不正确的是

A.在B点时,小球对圆轨道的压力为零

B.BC过程,小球做匀变速运动

C.在A点时,小球对圆轨道压力大于其重力

D.AB过程,小球水平方向的加速度先增加后减小

5.如图所示,水平面上放置质量为M的三角形斜劈,斜劈顶端安装光滑的定滑轮,细绳跨过定滑轮分别连接质量为m1m2的物块.m1在斜面上运动,三角形斜劈保持静止状态.下列说法中正确的是

A.若m2向下运动,则斜劈受到水平面向左摩擦力

B.若m1沿斜面向下加速运动,则斜劈受到水平面向右的摩擦力

C.若m1沿斜面向下运动,则斜劈受到水平面的支持力大于(m1+ m2+Mg

D.若m2向上运动,则轻绳的拉力一定大于m2g

二、多项选择题.本题共4小题,每小题4分,共计16分.每小题有多个选项符合题意.全部选对的得4分,选对但不全的得2分,错选或不答的得0分.

6.木星是太阳系中最大的行星,它有众多卫星.观察测出:木星绕太阳作圆周运动的半径为r1 周期为T1;木星的某一卫星绕木星作圆周运动的半径为r2 周期为T2.已知万有引力常量为G,则根据题中给定条件

A.能求出木星的质量

B.能求出木星与卫星间的万有引力

C.能求出太阳与木星间的万有引力

D.可以断定

7.如图所示,xOy坐标平面在竖直面内,x轴沿水平方向,y轴正方向竖直向上,在图示空间内有垂直于xOy平面的水平匀强磁场.一带电小球从O点由静止释放,运动轨迹如图中曲线.关于带电小球的运动,下列说法中正确的是

A.OAB轨迹为半圆

B.小球运动至最低点A时速度最大,且沿水平方向

C.小球在整个运动过程中机械能守恒

D.小球在A点时受到的洛伦兹力与重力大小相等

8.如图所示,质量为M、长为L的木板置于光滑的水平面上,一质量为m的滑块放置在木板左端,滑块与木板间滑动摩擦力大小为f,用水平的恒定拉力F作用于滑块.当滑块运动到木板右端时,木板在地面上移动的距离为s,滑块速度为v1,木板速度为v2,下列结论中正确的是

A.上述过程中,F做功大小为            

B.其他条件不变的情况下,F越大,滑块到达右端所用时间越长

C.其他条件不变的情况下,M越大,s越小

D.其他条件不变的情况下,f越大,滑块与木板间产生的热量越多

9.如图所示,两个固定的相同细环相距一定的距离,同轴放置,O1O2分别为两环的圆心,两环分别带有均匀分布的等量异种电荷.一带正电的粒子从很远处沿轴线飞来并穿过两环.则在带电粒子运动过程中

A.在O1点粒子加速度方向向左

B.从O1O2过程粒子电势能一直增加

C.轴线上O1点右侧存在一点,粒子在该点动能最小

D.轴线上O1点右侧、O2点左侧都存在场强为零的点,它们关于O1O2连线中点对称

 


第Ⅱ卷(非选择题 共89分)

三、简答题:本题分必做题(第lO、11题)和选做题(第12题)两部分,共计42分.请将解答填写在答题卡相应的位置.

必做题

10.测定木块与长木板之间的动摩擦因数时,采用如图所示的装置,图中长木板水平固定.

(1)实验过程中,电火花计时器应接在  ▲  (选填“直流”或“交流”)电源上.调整定滑轮高度,使  ▲ 

(2)已知重力加速度为g,测得木块的质量为M,砝码盘和砝码的总质量为m,木块的加速度为a,则木块与长木板间动摩擦因数μ=  ▲ 

(3)如图为木块在水平木板上带动纸带运动打出的一条纸带的一部分,0、1、2、3、4、5、6为计数点,相邻两计数点间还有4个打点未画出.从纸带上测出x1=3.20cm,x2=4.52cm,x5=8.42cm,x6=9.70cm.则木块加速度大小a=  ▲  m/s2(保留两位有效数字).

 


11.为了测量某电池的电动势 E(约为3V)和内阻 r,可供选择的器材如下:

A.电流表G1(2mA  100Ω)             B.电流表G2(1mA  内阻未知)

C.电阻箱R1(0~999.9Ω)                      D.电阻箱R2(0~9999Ω)

E.滑动变阻器R3(0~10Ω  1A)         F.滑动变阻器R4(0~1000Ω  10mA)

G.定值电阻R0(800Ω  0.1A)               H.待测电池

I.导线、电键若干

(1)采用如图甲所示的电路,测定电流表G2的内阻,得到电流表G1的示数I1、电流表G2的示数I2如下表所示:

I1(mA)

0.40

0.81

1.20

1.59

2.00

I2(mA)

0.20

0.40

0.60

0.80

1.00

 


根据测量数据,请在图乙坐标中描点作出I1I2图线.由图得到电流表G2的内阻等于

  ▲  Ω.

(2)在现有器材的条件下,测量该电池电动势和内阻,采用如图丙所示的电路,图中滑动变阻器①应该选用给定的器材中  ▲  ,电阻箱②选  ▲  (均填写器材代号).

(3)根据图丙所示电路,请在丁图中用笔画线代替导线,完成实物电路的连接.

 


12.选做题(请从A、B和C三小题中选定两小题作答,并在答题卡上把所选题目对应字母后的方框涂满涂黑.如都作答,则按A、B两小题评分.)

A.(选修模块3-3)(12分)

(1)下列说法中正确的是  ▲ 

A.液体表面层分子间距离大于液体内部分子间距离,液体表面存在张力

B.扩散运动就是布朗运动

C.蔗糖受潮后会粘在一起,没有确定的几何形状,它是非晶体

D.对任何一类与热现象有关的宏观自然过程进行方向的说明,都可以作为热力学第二定律的表述

(2)将1ml的纯油酸加到500ml的酒精中,待均匀溶解后,用滴管取1ml油酸酒精溶液,让其自然滴出,共200滴.现在让其中一滴落到盛水的浅盘内,待油膜充分展开后,测得油膜的面积为200cm2,则估算油酸分子的大小是  ▲  m(保留一位有效数字).

(3)如图所示,一直立的汽缸用一质量为m的活塞封闭一定量的理想气体,活塞横截面积为S,汽缸内壁光滑且缸壁是导热的,开始活塞被固定,打开固定螺栓K,活塞下落,经过足够长时间后,活塞停在B点,已知AB=h,大气压强为p0,重力加速度为g

①求活塞停在B点时缸内封闭气体的压强;

②设周围环境温度保持不变,求整个过程中通过缸壁传递的热量Q(一定量理想气体的内能仅由温度决定).

B.(选修模块3-4)(12分)

(1)下列说法中正确的是  ▲ 

A.照相机、摄影机镜头表面涂有增透膜,利用了光的干涉原理

B.光照射遮挡物形成的影轮廓模糊,是光的衍射现象

C.太阳光是偏振光

D.为了有效地发射电磁波,应该采用长波发射

(2)甲、乙两人站在地面上时身高都是L0, 甲、乙分别乘坐速度为0.6c和0.8cc为光速)的飞船同向运动,如图所示.此时乙观察到甲的身高L  ▲  L0;若甲向乙挥手,动作时间为t0,乙观察到甲动作时间为t1,则t1  ▲  t0(均选填“>”、“ =” 或“<”).

(3)x=0的质点在t=0时刻开始振动,产生的波沿x轴正方向传播,t1=0.14s时刻波的图象如图所示,质点A刚好开始振动.

①求波在介质中的传播速度;

②求x=4m的质点在0.14s内运动的路程.

   C.(选修模块3-5)(12分)

(1)下列说法中正确的是  ▲ 

A.康普顿效应进一步证实了光的波动特性

B.为了解释黑体辐射规律,普朗克提出电磁辐射的能量是量子化的

C.经典物理学不能解释原子的稳定性和原子光谱的分立特征

D.天然放射性元素衰变的快慢与化学、物理状态有关

(2)是不稳定的,能自发的发生衰变.

①完成衰变反应方程    ▲ 

衰变为,经过  ▲  α衰变,  ▲  β衰变.

(3)1919年,卢瑟福用α粒子轰击氮核发现质子.科学研究表明其核反应过程是:α粒子轰击静止的氮核后形成了不稳定的复核,复核发生衰变放出质子,变成氧核.设α粒子质量为m1,初速度为v0,氮核质量为m2,质子质量为m0, 氧核的质量为m3,不考虑相对论效应.

α粒子轰击氮核形成不稳定复核的瞬间,复核的速度为多大?

②求此过程中释放的核能.

四、计算题:本题共3小题,共计47分.解答时请写出必要的文字说明、方程式和重要的演算步骤,只写出最后答案的不能得分,有数值计算的题,答案中必须明确写出数值和单位.

13.如图所示,一质量为m的氢气球用细绳拴在地面上,地面上空风速水平且恒为v0,球静止时绳与水平方向夹角为α.某时刻绳突然断裂,氢气球飞走.已知氢气球在空气中运动时所受到的阻力f正比于其相对空气的速度v,可以表示为f=kvk为已知的常数).则

(1)氢气球受到的浮力为多大?

(2)绳断裂瞬间,氢气球加速度为多大?

(3)一段时间后氢气球在空中做匀速直线运动,其水平方向上的速度与风速v0相等,求此时气球速度大小(设空气密度不发生变化,重力加速度为g).

 


14.如图所示,光滑绝缘水平面上放置一均匀导体制成的正方形线框abcd,线框质量为m,电阻为R,边长为L.有一方向竖直向下的有界磁场,磁场的磁感应强度为B,磁场区宽度大于L,左边界与ab边平行.线框在水平向右的拉力作用下垂直于边界线穿过磁场区.

(1)若线框以速度v匀速穿过磁场区,求线框在离开磁场时ab两点间的电势差;

(2)若线框从静止开始以恒定的加速度a运动,经过t1时间ab边开始进入磁场,求cd边将要进入磁场时刻回路的电功率;

(3)若线框以初速度v0进入磁场,且拉力的功率恒为P0.经过时间Tcd边进入磁场,此过程中回路产生的电热为Q.后来ab边刚穿出磁场时,线框速度也为v0,求线框穿过磁场所用的时间t

      

15.如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心OMN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e

(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?

(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).

(3)在(2)的情况下,求金属圆筒的发热功率.

 


查看答案和解析>>


同步练习册答案