证明:(1)分别过点C.D.作CG⊥AB.DH⊥AB. 垂足为G.H.则∠CGA=∠DHB=90°.--1分 ∴ CG∥DH. ∵ △ABC与△ABD的面积相等. ∴ CG=DH. ----------2分 ∴ 四边形CGHD为平行四边形. ∴ AB∥CD. -----------3分 (2)①证明:连结MF.NE. -------4分 设点M的坐标为(x1.y1).点N的坐标为(x2.y2). ∵ 点M.N在反比例函数(k>0)的图象上. ∴ .. ∵ ME⊥y轴.NF⊥x轴. ∴ OE=y1.OF=x2. ∴ S△EFM=. ------5分 S△EFN=. ------6分 ∴S△EFM =S△EFN. -- 由(1)中的结论可知:MN∥EF. ---8分 ② MN∥EF. -------10分 (若学生使用其他方法.只要解法正确.皆给分. 查看更多

 

题目列表(包括答案和解析)

22、我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?
(1)阅读与证明:
对于这两个三角形均为直角三角形,显然它们全等.
对于这两个三角形均为钝角三角形,可证它们全等(证明略).
对于这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl
求证:△ABC≌△A1B1C1
(请你将下列证明过程补充完整.)
证明:分别过点B,B1作BD⊥CA于D,
B1D1⊥C1A1于D1
则∠BDC=∠B1D1C1=90°,
∵BC=B1C1,∠C=∠C1
∴△BCD≌△B1C1D1
∴BD=B1D1
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论.

查看答案和解析>>

(1)自主阅读:如图1,AD∥BC,连接AB、AC、BD、CD,则S△ABC=S△BCD
证明:分别过点A和D,作AF⊥BC,DE⊥BC
由AD∥BC,可得AF=DE.
又因为S△ABC=
1
2
×BC×AF,S△BCD=
1
2
×
BC×DE
所以S△ABC=S△BCD
由此我们可以得到以下的结论:像图1这样,
同底等高的两三角形面积相等
同底等高的两三角形面积相等

(2)结论证明:如果一条直线(线段)把一个平面图形的面积分成相等的两部分,我们把这条直线(线段)称为这个平面图形的一条面积等分线(段),如,平行四变形的一条对角线就是平形四边形的一条面积等分线段.
①如图2,梯形ABCD中AB∥DC,连接AC,过点B作BE∥AC,交DC延长线于点E,连接点A和DE的中点P,则AP即为梯形ABCD的面积等分线段,请你写出这个结论成立的理由:
②如图3,四边形ABCD中,AB与CD不平行,S△ADC>S△ABC,过点A能否做出四边形ABCD的面积等分线(段)?若能,请画出面积等分线(用钢笔或圆珠笔画图,不用写作法),不要证明

查看答案和解析>>

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等. 那么在什么情况下,它们会全等?

(1)阅读与证明:

对于这两个三角形均为直角三角形,显然它们全等.

对于这两个三角形均为钝角三角形,可证它们全等(证明略).

对于这两个三角形均为锐角三角形,它们也全等,可证明如下:

已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C=∠C1.

求证:△ABC≌△A1B1C1. (请你将下列证明过程补充完整)

证明:分别过点B,B1作BD⊥CA于D,B1D1⊥C1A1于D1.

则∠BDC=∠B1D1C1=90°,

∵BC=B1C1,∠C=∠C1

∴△BCD≌△B1C1D1

∴BD=B1D1.

______________________________。

(2)归纳与叙述:

由(1)可得到一个正确结论,请你写出这个结论.

 

 

 

查看答案和解析>>

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等,那么在什么情况下,它们会全等?
(1)阅读与证明:
若这两个三角形均为直角三角形,显然它们全等;
若这两个三角形均为钝角三角形,可证它们全等(证明略);
若这两个三角形均为锐角三角形,它们也全等,可证明如下:
已知:如图,△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1C1,∠C= ∠C1
求证:△ABC≌△A1B1C1。(请你将下列证明过程补充完整)
证明:分别过点B、B1作BD⊥CA于点D,B1D1⊥C1A1于点D1,则∠BDC=∠B1D1C1=90°,因为BC=B1C1,∠C=∠C1,所以△BCD≌△B1C1D1,所以BD=B1D1
____________________________,
____________________________;
(2)归纳与叙述:
由(1)可得到一个正确结论,请你写出这个结论。

查看答案和解析>>

我们知道,两边及其中一边的对角分别对应相等的两个三角形不一定全等.那么在什么情况下,它们会全等?

(1)阅读与证明:

对于这两个三角形均为直角三角形,显然它们全等.

对于这两个三角形均为钝角三角形,可证它们全等(证明略).

对于这两个三角形均为锐角三角形,它们也全等,可证明如下:

已知:△ABC、△A1B1C1均为锐角三角形,AB=A1B1,BC=B1Cl,∠C=∠Cl

求证:△ABC≌△A1B1C1.(请你将下列证明过程补充完整)

证明:分别过点B,B1作BD⊥CA于D,B1 D1⊥C1 A1于D1.则∠BDC=∠B1D1C1=900

∵BC=B1C1,∠C=∠C1,∴△BCD≌△B1C1D1,∴BD=B1D1

(2)归纳与叙述: 由(1)可得到一个正确结论,请你写出这个结论.

查看答案和解析>>


同步练习册答案