29. (1)传入神经 传出神经 (2)甲状腺 减弱 反馈 (3)胰岛 胰岛素.胰高血糖素 (4)免疫 查看更多

 

题目列表(包括答案和解析)

(2012•长春模拟)某学校为了研究学情,从高三年级中抽取了20名学生三次测试的数学成绩和物理成绩,计算出了他们三次成绩的平均名次如下表:
学生序号 1 2 3 4 5 6 7 8 9 10
数    学 1.3 12.3 25.7 36.7 50.3 67.7 49.0 52.0 40.0 34.3
物    理 2.3 9.7 31.0 22.3 40.0 58.0 39.0 60.7 63.3 42.7
学生序号 11 12 13 14 15 16 17 18 19 20
数    学 78.3 50.0 65.7 66.3 68.0 95.0 90.7 87.7 103.7 86.7
物    理 49.7 46.7 83.3 59.7 50.0 101.3 76.7 86.0 99.7 99.0
学校规定平均名次小于或等于40.0者为优秀,大于40.0者为不优秀.
(1)对名次优秀者赋分2,对名次不优秀者赋分1,从这20名学生中随机抽取2名,用ξ表示这两名学生数学科得分的和,求ξ的分布列和数学期望;
(2)根据这次抽查数据,是否在犯错误的概率不超过0.025的前提下认为物理成绩优秀与否和数学成绩优秀与否有关系?(下面的临界值表和公式可供参考:
P(K2≥k) 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 2.072 2.706 3.841 5.024 6.635 7.879 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

本题满分16分)两个数列{an},{bn},满足bn=
a1+2a2+3a3+…+nan
1+2+3+…+n
.★(参考公式1+22+32+…+n2=
n(n+1)(2n+1)
6

求证:{bn}为等差数列的充要条件是{an}为等差数列.

查看答案和解析>>

已知一口袋中分别装了3个白色、2个红色、n个黑色玻璃球,现从中任取2个玻璃球观察,每抽到一个白色球得1分,红色球得2分,黑色球得0分.用X表示所得的总分,已知共得0分的概率为
16

(1)求袋中黑色球的个数n;   
(2)求X的分布列和数学期望.

查看答案和解析>>

15、某品牌汽车的4S店,对最近100位采用分期付款的购车者进行统计,统计结果如表所示:
付款方式 分1期 分2期 分3期 分4期 分5期
频   数 40 20 20 10 10
4S店销售一辆该品牌的汽车,顾客分1期付款,其利润为1万元;分2期或3期付款,其利润为1.5万元;分4期或5期付款,其利润为2万元.该4S店进行年末促销活动:每辆汽车按让利10%销售,并送1000元油卡.若以频率作为概率,设促销活动期间,经销一辆汽车的利润为X,则X的数学期望EX=
1.16
万元.

查看答案和解析>>

(本小题满分16分)

已知函数(其中为自然对数的底数),

(1)若,求上的最大值;

(2)若时方程上恰有两个相异实根,求的取值范围;

(3)若,求使的图象恒在图象上方的最大正整数

[注意:]

 

查看答案和解析>>


同步练习册答案