题目列表(包括答案和解析)
2 |
2 |
设椭圆的左、右焦点分别为,上顶点为,离心率为 , 在轴负半轴上有一点,且
(1)若过三点的圆 恰好与直线相切,求椭圆C的方程;
(2)在(1)的条件下,过右焦点作斜率为的直线与椭圆C交于两点,在轴上是否存在点,使得以为邻边的平行四边形是菱形,如果存在,求出的取值范围;如果不存在,说明理由.
若圆过点且与直线相切,设圆心的轨迹为曲线,、为曲线上的两点,点,且满足.
(1)求曲线的方程;
(2)若,直线的斜率为,过、两点的圆与抛物线在点处有共同的切线,求圆的方程;
(3)分别过、作曲线的切线,两条切线交于点,若点恰好在直线上,求证:与均为定值.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com