解:(1)连结交于. 当顶点与重合时.折痕垂直平分. . 1分 在平行四边形中.. . . 2分 四边形是菱形. 3分 (2)四边形是菱形.. 设... 4分 ① 又.则. ② 5分 由①.②得: 6分 . 的周长为. 7分 (3)过作交于.则就是所求的点. 9分 证明:由作法.. 由(1)得:.又. . .则 10分 四边形是菱形... 11分 12分 查看更多

 

题目列表(包括答案和解析)

如图,在直角坐标系中,抛物线轴交于点D(0,3).

1.直接写出的值;

2.若抛物线与轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;

3.已知点P是直线BC上一个动点,

①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥轴,垂足为E,连结BE.设点P的坐标为(),△PBE的面积为,求的函数关系式,写出自变量的取值范围,并求出的最大值;

②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求的值,并直接写出点P的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

如图,在直角坐标系中,抛物线轴交于点D(0,3).

【小题1】直接写出的值;
【小题2】若抛物线与轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;
【小题3】已知点P是直线BC上一个动点,
①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥轴,垂足为E,连结BE.设点P的坐标为(),△PBE的面积为,求的函数关系式,写出自变量的取值范围,并求出的最大值;
②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求的值,并直接写出点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

如图,在直角坐标系中,抛物线轴交于点D(0,3).

1.直接写出的值;

2.若抛物线与轴交于A、B两点(点B在点A的右边),顶点为C点,求直线BC的解析式;

3.已知点P是直线BC上一个动点,

①当点P在线段BC上运动时(点P不与B、C重合),过点P作PE⊥轴,垂足为E,连结BE.设点P的坐标为(),△PBE的面积为,求的函数关系式,写出自变量的取值范围,并求出的最大值;

②试探索:在直线BC上是否存在着点P,使得以点P为圆心,半径为的⊙P,既与抛物线的对称轴相切,又与以点C为圆心,半径为1的⊙C相切?如果存在,试求的值,并直接写出点P的坐标;如果不存在,请说明理由.

 

查看答案和解析>>

已知Rt△ABC和Rt△DEF按如图①摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠F=∠B=45°,AC=8cm,CF=10cm.如图②,△DEF从图①的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以
3
2
2
cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t≤5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上(结果精确到个位)?
(2)连接PE,四边形APEC的面积为S,用含有t的数学表达式表示S.当t为何值时,S的值为23;
(3)当t=
4
4
,面积S最小,S的最小值是
20
20
.(提示:参考配方法)

查看答案和解析>>

已知Rt△ABC和Rt△DEF按如图①摆放(点C与点E重合),点B、C(E)、F在同一条直线上.∠ACB=∠EDF=90°,∠F=∠B=45°,AC=8cm,CF=10cm.如图②,△DEF从图①的位置出发,以1cm/s的速度沿CB向△ABC匀速移动,在△DEF移动的同时,点P从△ABC的顶点B出发,以cm/s的速度沿BA向点A匀速移动.当△DEF的顶点D移动到AC边上时,△DEF停止移动,点P也随之停止移动.DE与AC相交于点Q,连接PQ,设移动时间为t(s)(0<t≤5).解答下列问题:
(1)当t为何值时,点A在线段PQ的垂直平分线上(结果精确到个位)?
(2)连接PE,四边形APEC的面积为S,用含有t的数学表达式表示S.当t为何值时,S的值为23;
(3)当t=______,面积S最小,S的最小值是______.(提示:参考配方法)

查看答案和解析>>


同步练习册答案