解:解:当cm时.的面积是, 当cm时.的面积是, 当cm时.的面积是. (每种情况.图给1分.计算结果正确1分.共6 查看更多

 

题目列表(包括答案和解析)

已知:如图1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2).解答下列问题:

1.①.当t为何值时,PQ∥BC? 

2.②.设⊿AQP的面积为y(cm),求y与t之间的函数关系式;

3.③.是否存在某一时刻t,使线段PQ恰好把Rt⊿ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

4.④.如图2,连接PC,并把⊿PQC沿QC翻折,得到四边形PQC,那么是否存在某时刻t,使四边形PQC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由。

 

查看答案和解析>>

已知:如图1,在Rt⊿ACB中,∠C=90°,AC=4cm,BC=3cm,点P由点B出发沿BA方向向点A匀速运动,速度为1cm/s;点Q由点A出发沿AC方向向点C匀速运动,速度为2cm/s;连接PQ.若设运动的时间为t(s)(0<t<2).解答下列问题:

1.①.当t为何值时,PQ∥BC? 

2.②.设⊿AQP的面积为y(cm),求y与t之间的函数关系式;

3.③.是否存在某一时刻t,使线段PQ恰好把Rt⊿ACB的周长和面积同时平分?若存在,求出此时t的值;若不存在,说明理由;

4.④.如图2,连接PC,并把⊿PQC沿QC翻折,得到四边形PQC,那么是否存在某时刻t,使四边形PQC为菱形?若存在,求出此时菱形的边长;若不存在,说明理由。

 

查看答案和解析>>

如图,已知△ABC中,AB=10cm,AC=8cm,BC=6 cm ,如果点P由B出发沿BA方向向点A匀速运动,速度为2cm /s,同时点Q由A出发沿AC方向向点C匀速运动,速度为1cm /s,连接PQ,设运动的时间为t(单位:s)(0≤t≤5).解答下列问题:

(1)当t为何值时,△APQ是直角三角形

(2)是否存在某时刻t,使线段PQ恰好把△ABC的面积平分?若存在求出此时t的值;若不存在,请说明理由

(3)把△APQ沿AB(或沿AC)翻折,翻折前后的两个三角形所组成的四边形能不能是菱形?若能,求出此时菱形的面积;若不能,请说明理由

查看答案和解析>>

用解析式表示下列函数关系:

(1)一个矩形的面积是230cm2,它的长为x cm,宽为y cm;

(2)当三角形的面积为75cm2时,它的底边a cm是这条底边上的高h cm的函数;

(3)一个圆柱的体积是100cm3,它的高为x cm,底面积为y cm2

(4)一个圆锥的体积是80cm3,它的高为x cm,底面积为y cm2

查看答案和解析>>

如图①,在边长为cm的正方形ABCD中,E、F是对角线AC上的两个动点,它们分别从点A、点C同时出发,沿对角线以1 cm/s的相同速度运动,过E作EH垂直AC交Rt△ACD的直角边于H;过F作FG垂直AC交Rt△ACD的直角边于G,连接HG、EB.设HE、EF、FG、GH围成的图形面积为S1,AE、EB、BA围成的图形面积为S2(这里规定:线段的面积为0).E到达C,F到达A停止.若E的运动时间为xs,解答下列问题:

(1)当0<x<8时,直接写出以E、F、G、H为顶点的四边形是什么四边形,并求出x为何值时,S1=S2

(2)①若y是S1与S2的和,求y与x之间的函数关系式;(图②为备用图)

②求y的最大值.

查看答案和解析>>


同步练习册答案