33.教材中“直线和圆 与“圆锥曲线 两章内容体现出解析几何的本质是用代数的方法研究图形的几何性质.(即数形结合) 查看更多

 

题目列表(包括答案和解析)

本题有(1)、(2)、(3)三个选答题,每题7分,请考生任选2题作答,满分14分.如果多作,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将选题号填入括号中
(1)(本题满分7分)选修4一2:矩阵与变换
求矩阵的特征值及对应的特征向量。
(2)(本题满分7分)选修4一4:坐标系与参数方程
已知直线的参数方程:为参数)和圆的极坐标方程:
(I)将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;
(II)判断直线和圆的位置关系
(3)(本题满分7分)选修4一5:不等式选讲
已知函数. 若不等式恒成立,求实数的范围。

查看答案和解析>>


C.选修4—4:坐标系与参数方程
(本小题满分10分)
在极坐标系中,圆的方程为,以极点为坐标原点,极轴为轴的正半轴建立平面直角坐标系,直线的参数方程为为参数),判断直线和圆的位置关系.

查看答案和解析>>

对于两条平行直线和圆的位置关系定义如下:若两直线中至少有一条与圆相切,则称该位置关系为“平行相切”;若两直线都与圆相离,则称该位置关系为“平行相离”;否则称为“平行相交”。已知直线,和圆C的位置关系是“平行相交”,则b的取值范围为( )

A. B.

C. D.

 

查看答案和解析>>

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.

(1)(本小题满分7分)选修4-4:坐标系与参数方程

 以直角坐标系的原点为极点,轴的正半轴为极轴。已知点的直角坐标为(1,-5),点的极坐标为若直线过点,且倾斜角为,圆为圆心、为半径。

(I)求直线的参数方程和圆的极坐标方程;

(II)试判定直线和圆的位置关系.

(2)(本小题满分7分)选修4-4:矩阵与变换

把曲线先进行横坐标缩为原来的一半,纵坐标保持不变的伸缩变换,再做关于轴的反射变换变为曲线,求曲线的方程.

(3)(本小题满分7分)选修4-5:不等式选讲

关于的一元二次方程对任意无实根,求实数的取值范围.

 

查看答案和解析>>

(本小题满分14分)本题(1)、(2)、(3)三个选答题,每小题7分,任选2题作答,满分14分,如果多做,则按所做的前两题计分。作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中。

(1)(本小题满分7分) 选修4-2:矩阵与变换

已知,若所对应的变换把直线变换为自身,求实数,并求的逆矩阵。

 

(2)(本题满分7分)选修4-4:坐标系与参数方程

 已知直线的参数方程:为参数)和圆的极坐标方程:

①将直线的参数方程化为普通方程,圆的极坐标方程化为直角坐标方程;

②判断直线和圆的位置关系。

 

(3)(本题满分7分)选修4-5:不等式选讲

 已知函数

①解不等式

②证明:对任意,不等式成立.

 

 

查看答案和解析>>


同步练习册答案