102.你认为两圆的公切线的条数该如何去求解? ①相内切时仅有一条公切线,②相外切时有三条公切线,③相交时有两条公切线,④相离时有四条公切线 查看更多

 

题目列表(包括答案和解析)

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是
 
.(把你认为正确命题的序号都填上)

查看答案和解析>>

给出下列四个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
2S
a+b+c
,则由类比推理知四面体ABCD的内切球半径R=
3V
S1+S2+S3+S4
(其中,V为四面体的体积,S1,S2,S3,S4为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
y
=1.23x+0.08

③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
④若圆C1x2+y2+2x=0,圆C2x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中,正确命题的序号是
①②④
①②④
.(把你认为正确命题的序号都填上)

查看答案和解析>>

给出下列命题:
①已知椭圆的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

给出下列四个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径,则由类比推理知四面体ABCD的内切球半径(其中,V为四面体的体积,S1,S2,S3,S4为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
④若圆,圆,则这两个圆恰有2条公切线.
其中,正确命题的序号是    .(把你认为正确命题的序号都填上)

查看答案和解析>>

给出下列命题:
①已知椭圆
x2
16
+
y2
8
=1
的两个焦点为F1,F2,则这个椭圆上存在六个不同的点M,使得△F1MF2为直角三角形;
②已知直线l过抛物线y=2x2的焦点,且与这条抛物线交于A,B两点,则|AB|的最小值为2;
③若过双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)
的一个焦点作它的一条渐近线的垂线,垂足为M,O为坐标原点,则|OM|=a;
④已知⊙C1:x2+y2+2x=0,⊙C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中正确命题的序号是______.(把你认为正确命题的序号都填上)

查看答案和解析>>


同步练习册答案