题目列表(包括答案和解析)
(本小题满分15分)已知点P(4,4),圆C:
与椭圆E:
有一个公共点A(3,1),F1.F2分别是椭圆的左.右焦点,直线PF1与圆C相切.
![]()
(1)求m的值与椭圆E的方程;
(2)设Q为椭圆E上的一个动点,求
的范围.
(本题满分15分)
已知圆A:
与x轴负半轴交于B点,过B的弦BE与y轴正半轴交于D点,且2BD=DE,曲线C是以A,B为焦点且过D点的椭圆.
(1)求椭圆的方程;
(2)点P在椭圆C上运动,点Q在圆A上运动,求PQ+PD的最大值.
(本小题满分12分)
已知点A(15,0),点P是圆
上的动点,M为线段PA的中点,当点P在圆上运动时,求动点M的轨迹方程.
(本题15分)已知点
是椭圆E:
(
)上一点,F1、F2分别是椭圆E的左、右焦点,O是坐标原点,PF1⊥x轴.
(Ⅰ)求椭圆E的方程;
(Ⅱ)设A、B是椭圆E上两个动点,
(
).求证:直线AB的斜率为定值;
(Ⅲ)在(Ⅱ)的条件下,当△PAB面积取得最大值时,求λ的值.
(本题满分15分)已知实数a满足0<a≤2,a≠1,设函数f (x)=
x3-
x2+ax.
(Ⅰ) 当a=2时,求f (x)的极小值;
(Ⅱ)若函数g(x)=x3+bx2-(2b+4)x+ln x (b∈R)的极小值点与f (x)的极小值点相同.
求证:g(x)的极大值小于等于
.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com