判断和证明数列是等差数列常有三种方法:(1)定义法:对于n≥2的任意自然数,验证为同一常数.中项公式法:验证都成立. 查看更多

 

题目列表(包括答案和解析)

数列{an}中,若存在常数M,?n∈N*,均有|an|≤M,称数列{an}是有界数列;把Ln=
ni=1
|ai+1-ai|(n∈N*)
叫数列{an}的前n项邻差和,数列{Ln}叫数列{an}的邻差和数列.
(1)若数列{an}满足,?n∈N*,均有|an+3|+|an-1|≤6恒成立,试证明:{an}是有界数列;
(2)试判断公比为q的正项等比数列{an}的邻差和数列{Ln}是否为有界数列,证明你的结论;
(3)已知数列{an}、{bn}的邻差和{Ln}与{L'n}均为有界数列,试证明数列{anbn}的邻差和数列{L''n}也是有界数列.

查看答案和解析>>

定义:若数列{an}对任意n∈N*,满足
an+2-an+1
an+1-an
=k
(k为常数),称数列{an}为等差比数列.
(1)若数列{an}前n项和Sn满足Sn=3(an-2),求{an}的通项公式,并判断该数列是否为等差比数列;
(2)若数列{an}为等差数列,试判断{an}是否一定为等差比数列,并说明理由;
(3)若数列{an}为等差比数列,定义中常数k=2,a2=3,a1=1,数列{
2n-1
an+1
}
的前n项和为Tn,求证:Tn<3.

查看答案和解析>>

定义:若数列对任意,满足为常数),称数列为等差比数列.

(1)若数列项和满足,求的通项公式,并判断该数列是否为等差比数列;

(2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由;

(3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.

 

查看答案和解析>>

定义:若数列对任意,满足为常数),称数列为等差比数列.
(1)若数列项和满足,求的通项公式,并判断该数列是否为等差比数列;
(2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由;
(3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.

查看答案和解析>>

定义:若数列对任意,满足为常数),称数列为等差比数列.
(1)若数列项和满足,求的通项公式,并判断该数列是否为等差比数列;
(2)若数列为等差数列,试判断是否一定为等差比数列,并说明理由;
(3)若数列为等差比数列,定义中常数,数列的前项和为, 求证:.

查看答案和解析>>


同步练习册答案