3.D [命题意图]本小题主要考查了复数的运算和复数的概念.以复数的运算为载体.直接考查了对于复数概念和性质的理解程度. [解析]对于 查看更多

 

题目列表(包括答案和解析)

如图,在五棱锥SABCDE中,SA⊥底面ABCDESA=AB=AE=2,BC=DE=,∠BAE=∠BCD=∠CDE=120°.?

(1)求异面直线CDSB所成的角(用反三角函数值表示);?

(2)证明BC⊥平面SAB;?

(3)用反三角函数值表示二面角B-SC-D的大小.(本小问不必写出解答过程)

查看答案和解析>>

 (选做题)从A,B,C,D四个中选做2个,每题10分,共20分.解答时应写出文字说明、证明过程或演算步骤.

A.(本小题为选做题,满分10分)

如图,AB是半圆的直径,CAB延长线上一点,CD

切半圆于点DCD=2,DEAB,垂足为E,且E

OB的中点,求BC的长.

 

B.(本小题为选做题,满分10分)

已知矩阵,其中,若点P(1,1)在矩阵A的变换下得到点

(1)求实数a的值;    (2)求矩阵A的特征值及特征向量.

 

C.(本小题为选做题,满分10分)

设点分别是曲线上的动点,求动点间的最小距离.

 

D.(本小题为选做题,满分10分)

为正数,证明:.

 

 

 

 

 

 

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

(本小题满分13分)

已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点。

(1)求椭圆C的方程;

(2)是否存在平行于OA的直线,使得直线与椭圆C有公共点,且直线OA与的距离等于4?若存在,求出直线的方程;若不存在,请说明理由。

【命题意图】本小题主要考查直线、椭圆等基础知识,考查运算求解能力、推理论证能力,考查函数与方程思想、数形结合思想、化归与转化思想。

查看答案和解析>>

(本小题满分14分)

(1)已知等差数列{an}的前n项和为Sn,若m+n=s+t(m,n,s,t∈N*,且m≠n,s≠t),证明;=

(2)注意到(1)中Sn与n的函数关系,我们得到命题:设抛物线x2=2py(p>0)的图像上有不同的四点A,B,C,D,若xA,xB,xC,xD分别是这四点的横坐标,且xA+xB=xC+xD,则AB∥CD,判定这个命题的真假,并证明你的结论

(3)我们知道椭圆和抛物线都是圆锥曲线,根据(2)中的结论,对椭圆+ =1(a>b>0)提出一个有深度的结论,并证明之.

 

查看答案和解析>>


同步练习册答案