解:(I)设该同学连对线的个数为y.得分为ξ,则y=0.1.2.4 ∴ξ=0.2.4.8 则ξ的分布列为 ξ 0 2 4 8 P (II)Eξ=0×+2×+4×+8×=2, 答:该人得分的期望为2分 查看更多

 

题目列表(包括答案和解析)

(2012•洛阳一模)某同学进行一项闯关游戏,规则如下:游戏共三道关,闯每一道关通过,方可去闯下一道关,否则停止;同时规定第i(i=1,2,3)次闯关通过得i分,否则记0分.已知该同学每道关通过的概率都为0.8,且不受其它因素影响.
(1)求该同学恰好得3分的概率;
(2)设该同学停止闯关时所得总分为X,求随机变量X的分布列及数学期望.

查看答案和解析>>

一位同学分别参加了三所大学自主招生笔试(各校试题各不相同),如果该同学通过各校笔试的概率分别为
3
4
2
3
1
2
,且该同学参加三所大学的笔试通过与否互不影响.
(I)求该同学至少通过一所大学笔试的概率;
(II)设该同学通过笔试的大学所数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

为了让学生更多的了解“数学史”知识,某班级举办一次“追寻先哲的足迹,倾听数学的声音”的数学史知识竞赛活动.现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表:
精英家教网
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:为每位参加决赛的选手准备4道判断题,选手对其依次口答,答对两道就终止答题,并获得一等奖,若题目答完仍然只答对l道,则获得二等奖.某同学进入决赛,每道题答对的概率p的值恰好与频率分布表中不少于80分的频率值相同.
(i)求该同学恰好答满4道题而获得一等奖的概率;
(ii)设该同学决赛中答题个数为X,求X的分布列及X的数学期望.

查看答案和解析>>

某校篮球选修课的考核方式采用远距离投离篮进行,规定若学生连中两球,则通过考核,终止投篮;否则继续投篮,直至投满四次终止.现有某位同学每次投篮的命中率为
2
3
,且每次投篮相互经独立.
(I)该同学投中二球但未能通过考核的概率;
(II)现知该校选修篮球的同学共有27位,每位同学每次投篮的命中率为
2
3
,且每次投篮相互独立.在这次考核中,记通过的考核的人数为X,求X的期望.

查看答案和解析>>

一位同学分别参加了三所大学自主招生笔试(各校试题各不相同),如果该同学通过各校笔试的概率分别为,且该同学参加三所大学的笔试通过与否互不影响.
(I)求该同学至少通过一所大学笔试的概率;
(II)设该同学通过笔试的大学所数为ξ,求ξ的分布列和数学期望.

查看答案和解析>>


同步练习册答案