有了开放的意识.加上方法指导.开放才会成为可能.开放问题的构建主要从两个方面进行.其一是问题本身的开放而获得新问题.其二是问题解法的开放而获得新思路.根据创造的三要素:“结构.关系.顺序 .我们可以为学生构建由“封闭 题“开放 的如下框图模式: (例1)已知,并且求证(下册第12页例7) 除教材介绍的方法外.根据目标的结构特征.改变一下考察问题的角度.或同时对目标的结构作些调整.重新组合.可获得如下思路:两点的连线的斜率大于两点的连线的斜率,b个单位溶液中有a个单位溶质.其浓度小于加入m个单位溶质后的浓度,在数轴上的原点和坐标为1的点处.分别放置质量为m.a的质点时质点系的重心.位于分别放置质量为m.b的质点时质点系的重心的左侧等. (例2)用实际例子说明所表示的意义 给变量赋予不同的内涵.就可得出函数不同的解释.我们从物理和经济两个角度出发给出实例.1.X表示时间.y表示速度.开始计时后质点以10/s的初速度作匀加速运动.加速度为2m/s2.5秒钟后质点以20/s的速度作匀速运动.10秒钟后质点以-2m/s2的加速度作匀减速运动.直到质点运动到20秒末停下. 查看更多

 

题目列表(包括答案和解析)

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村年十年间每年考入大学的人数.为方便计算,年编号为年编号为,…,年编号为.数据如下:

年份(

10

人数(

11

13

14

17

22

30

31

(1)从这年中随机抽取两年,求考入大学的人数至少有年多于人的概率;

(2)根据前年的数据,利用最小二乘法求出关于的回归方程,并计算第年的估计值和实际值之间的差的绝对值。

 

【解析】(1)设考入大学人数至少有1年多于15人的事件为A则P(A)=1-=      (4’)

(2)由已知数据得=3,=8,=3+10+24+44+65=146=1+4+9+16+25=55(7’)

=,                   (9’)

 则回归直线方程为y=2.6x+0.2                           (10’)

则第8年的估计值和真实值之间的差的绝对值为

 

查看答案和解析>>

壮怀激烈千古恨 初出茅庐志已衰

  继萨凯里之后,大概又过了半个世纪.欧洲“数学之王”高斯的至友匈牙利数学家伏尔夫刚·鲍里埃,终身从事证明“第五公设”的研究,由于心血耗尽,毫无成效,便怀着沉重的心情,给那酷爱数学的儿子亚诺什·鲍耶(1802~1860)写信,希望小鲍耶“不要再做克服平行公理的尝试”.他忠告儿子说:“投身于这一贪得无度地吞人们的智慧、精力和心血的无底洞,白花时间在上面,一辈子也证不出这个命题来.”他满腹心酸地写到:“我经过了这个毫无希望的夜的黑暗,我在这里面埋没了人生的一切亮光、一切欢乐和一切希望.”最后告诫自己心爱的儿子说:“若再痴恋这一无止无休的劳作,必然会剥夺你生活的一切时间、健康、休息和幸福!”但是,年仅21岁的小鲍耶却是敢向“无底洞”觅求真知的探索者.他认真吸取前人失败的教训,初出茅庐就大显身手.小鲍耶匠心独运,大胆创新,决然将“第五公设”换成他自身的否定.从“三角形三个内角和小于180°”这一令人瞠目结舌的假设出发,建立起一套完整协调、天衣无缝的新几何体系.小鲍耶满怀激情地将自己的科学创见向父亲报捷.老伏尔夫刚以之见教于至友高斯,不久,高斯复信鲍里埃,信中写到:“如果我一开始便说我不能称赞这样的成果,你一定会感到惊讶.但是,我不能不这样说,因为称赞这些成果就等于称赞我自己.令郎的这些工作,他走过的路,以及所获得的成果,跟我过去30年至35年前的所思所得几乎一模一样.”高斯在回信结尾还开诚布公地提到:“我自己的著作,尽管写好的只是一部分,我本来也想发表,因为我怕引某些人的喊声,现在,有了朋友的儿子能够这样写下来,免得他与我一样湮没,那是使我非常高兴的.”这位当代数学大师恐怕做梦也没想到,他这封推心置腹的信,竟会一举撞毁初露锋芒的数坛新星!

  高斯的复信给小鲍耶带来意想不到的毁灭性打击.踌躇满志的鲍耶误认为高斯动用自己拥有的崇高权威来垄断和夺取这一新体系的发明优先权.为此,他痛心疾首,认为自己心血浇灌出来的成果和呕心沥血的辛勤工作,竟得不到大家的理解、支持和同情.于是郁郁寡欢,大失所望,发誓抛弃了一切数学研究.

1.对于“数学之王”高斯给鲍耶的回信,你有什么看法呢?如果你是高斯,你该怎样回信?

2.踌躇满志的鲍耶误认为“高斯动用自己拥有的崇高权威来垄断和夺取这一新体系的发明优先权”,进而“郁郁寡欢,大失所望,发誓抛弃了一切数学研究”.你又有何看法呢?假如你是鲍耶,你又该怎么做呢?

查看答案和解析>>

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2010年十年间每年考入大学的人数.为方便计算,2001年编号为1,2002年编号为2,…,2010年编号为10据如下:
年份(x) 1 2 3 4 5 6 7 8 9 10
人数(y) 3 5 8 11 13 14 17 22 30 31
(1)从这10年中随机抽取两年,求考入大学的人数至少有1年多于15概率;
(2)根据前5年的数据,利用最小二乘法求出y关于x的回归方程y=
b
x+
a
,并计算第8年的估计值和实际值之间的差的绝对值.
b
=
n
i=1
(xi-
.
x
)(yi-
.
y
)
n
i=1
(x-
.
x
)2
=
n
i=1
xiyi-n
.
xy
n
i=1
x
2
i
-n
.
x
a
=
.
y
-b
.
x

查看答案和解析>>

改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2005年五年间每年考入大学的人数,为了方便计算,2001年编号为1,2002年编号为2,…,2005年编号为5,数据如下:
年份(x) 1 2 3 4 5
人数(y) 3 5 8 11 13
(1)从这5年中随机抽取两年,求考入大学的人数至少有1年多于10人的概率.
(2)根据这5年的数据,利用最小二乘法求出y关于x的回归方程
y
=
b
x+
a
,并计算第8年的估计值.
参考:用最小二乘法求线性回归方程系数公式
b
=
n
i=1
xiyi-n
.
x
.
y
n
i=1
xi2-n
.
x
2
a
=
.
y
-b
.
x

查看答案和解析>>

(2011•黑龙江一模)改革开放以来,我国高等教育事业有了突飞猛进的发展,有人记录了某村2001到2010年十年间每年考入大学的人数.为方便计算,2001年编号为1,2002年编号为2,…,2010年编号为10.数据如下:
年份x 1 2 3 4 5 6 7 8 9 10
人数y 3 5 8 11 13 14 17 22 30 31
(1)从这10年中随机抽取两年,求考入大学人数至少有1年多于15人的概率;
(2)根据前5年的数据,利用最小二乘法求出y关于x的回归方程y=
?
b
x+
?
a
,并计算第8年的估计值和实际值之间的差的绝对值.

查看答案和解析>>


同步练习册答案