7.已知函数f(x)满足:f(3)=2, (3)=-2, 则极限的值为 查看更多

 

题目列表(包括答案和解析)

已知函数f(x)=x-ln(x+m)在定义域内连续.

(1)求f(x)的单调区间和极值.

(2)当m为何值时,f(x)≥0恒成立?

(3)定理:若函数g(x)在[a,b]上连续,并具有单调性,且满足g(a)与g(b)异号,则方程g(x)=0在[a,b]内有唯一实根.

试用上述定理证明:当m∈N*且m>1时方程f(x)=0在[1-m,em-m]内有唯一实根.(e为自然对数的底)

查看答案和解析>>

已知非零向量a,b满足:|a|=2|b|,若函数f(x)=x3|a|x2a·bx在R上有极值,设向量a,b的夹角为,则cos的取值范围为

[  ]
A.

[,1]

B.

(,1]

C.

[-1,]

D.

[-1,)

查看答案和解析>>

若存在实数k和b,使得函数f(x)与g(x)对其定义域上的任意实数x分别满足:f(x)≥kx+b和g(x)≤kx+b,则称直线l:y=kx+b为f(x)与g(x)的“和谐直线”.已知h(x)=x2(x)=2elnx,(e为自然对数的底数);

(1)F(x)=h(x)-(x)的极值

(2)函数h(x)和(x)是否存在和谐直线?若存在,求出此和谐直线方程;若不存在,请说明理由.

查看答案和解析>>

已知函数f(x)=ln(x+1)+mx,当x=0时,函数f(x)取得极大值.

(1)求实数m的值;

(2)已知结论:若函数f(x)=ln(x+1)+mx在区间(a,b)内导数都存在,且a>-1,则存在a0∈(a,b),使得(x0)=.试用这个结论证明:若-1<x1<x2,函数g(x)=(x-x1)+f(x1),则对任意x∈(x1,x2),都有f(x)>g(x);

(3)已知正数λ1,λ2,λ3,…,λn,满足λ1+λ2+λ3+…+λn=1,求证:当x≥2,n∈N时,对任意大于-1,且互不相等的实数x1,x2,x3,…,xn,都有f(λ1x1+λ2x2+…+λnxn)>λ1f(x1)+λ2f(x2)+…+λnf(xn)

查看答案和解析>>

已知函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3.

(1)求f(x)的解析式;

(2)若过点A(2,m)可作曲线y=f(x)的三条切线,求实数m的取值范围.

【解析】本试题主要考查了导数在研究函数中的运用。第一问,利用函数f(x)=ax3+bx2+cx在x=±1处取得极值,且在x=0处的切线的斜率为-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中设切点为(x0,x03-3x0),因为过点A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分离参数∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函数求导数,判定单调性,从而得到要是有三解,则需要满足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依题意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)设切点为(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切线方程为y-(x03-3x0)=(3x02-3)(x-x0)

又切线过点A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

则g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)单调递减,(0,2)单调递增,(2,+∞)单调递减.

∴g(x)极小值=g(0)=-6,g(x)极大值=g(2)=2

画出草图知,当-6<m<2时,m=-2x3+6x2-6有三解,

所以m的取值范围是(-6,2).

 

查看答案和解析>>


同步练习册答案