如图.内接于.为的直径...过点作的切线与的延长线交于点.求的长. [命题意图]特殊角三角函数和圆知识综合应用 [参考答案]解:是的直径..又. .. 3分 又.所以是等边三角形.由.知. 5分 是的切线.. 在中... 所以.. 8分 [试题来源]新海中学模拟试题 12如图.已知四边形中.点...分别是...的中点.并且点...有在同一条直线上. 求证:和互相平分. [命题意图]三角形中位线定理的应用和平行四边形的判断定理 [参考答案]连结....点...分别是...的中点.在中.,在中...四边形为平行四边形.与互相平分. [试题来源]南京中考模拟试题 查看更多

 

题目列表(包括答案和解析)

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

 

 

 

 

 

 

 

 

 

 

 

 


图1                      图2                     备用图

(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.



 
图1                      图2                     备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;
(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

查看答案和解析>>

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.



 
图1                      图2                     备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;
(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

查看答案和解析>>

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处, H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.

 

 

 

 

 

 

 

 

 

 

 

 

 


图1                       图2                      备用图

(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;

(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

 

查看答案和解析>>

(本小题满分5分)已知菱形纸片ABCD的边长为,∠A=60°,E为边上的点,过点E作EF∥BD交AD于点F.将菱形先沿EF按图1所示方式折叠,点A落在点处,过点作GH∥BD分别交线段BC、DC于点G、H,再将菱形沿GH按图1所示方式折叠,点C落在点处,H分别交于点M、N.若点在△EF的内部或边上,此时我们称四边形(即图中阴影部分)为“重叠四边形”.



 
图1                      图2                     备用图
(1)若把菱形纸片ABCD放在菱形网格中(图中每个小三角形都是边长为1的等边三角形),点A、B、C、D、E恰好落在网格图中的格点上.如图2所示,请直接写出此时重叠四边形的面积;
(2)实验探究:设AE的长为,若重叠四边形存在.试用含的代数式表示重叠四边形的面积,并写出的取值范围(直接写出结果,备用图供实验,探究使用).

查看答案和解析>>


同步练习册答案