题目列表(包括答案和解析)
从参加环保知识竞赛的学生中抽出60名,将其成绩(均为整数)整理后画出的频率分布直方图如图所示,观察图形,回答下列问题:
⑴80~90这一组的频数、频率分别是多少?
⑵估计这次环保知识竞赛的及格率(60分及以上为及格). (本小题满分10分)
【解析】本试题主要考查了统计和概率的综合运用。
第一问频率:0.025×10=0.25;……………3分
频数:60×0.25=15. ………………6分
第二问0.015×10+0.025×10+0.03×10+0.005×10=0.75
解:(1)频率:0.025×10=0.25;……………3分
频数:60×0.25=15. ………………6分
(2)0.015×10+0.025×10+0.03×10+0.005×10=0.75
某校从参加高三年级理科综合物理考试的学生中随机抽出名学生,将其数学成绩(均为整数)分成六段,…后得到如下部分频率分布直方图.观察图形的信息,回答下列问题:
(Ⅰ)求分数在内的频率,并补全这个频率分布直方图;
(Ⅱ)统计方法中,同一组数据常用该组区间的中点值作为代表,据此估计本次考试的
平均分;
(Ⅲ)若从名学生中随机抽取人,抽到的学生成绩在记分,在记分,
在记分,用表示抽取结束后的总记分,求的分布列和数学期望.
【解析】(1)中利用直方图中面积和为1,可以求解得到分数在内的频率为
(2)中结合平均值可以得到平均分为:
(3)中用表示抽取结束后的总记分x, 学生成绩在的有人,在的有人,在的有人,结合古典概型的概率公式求解得到。
(Ⅰ)设分数在内的频率为,根据频率分布直方图,则有,可得,所以频率分布直方图如右图.……4分
(求解频率3分,画图1分)
(Ⅱ)平均分为:……7分
(Ⅲ)学生成绩在的有人,在的有人,
在的有人.并且的可能取值是. ………8分
则;; ;
;.(每个1分)
所以的分布列为
0 |
1 |
2 |
3 |
4 |
|
…………………13分
在本次数学期中考试试卷中共有10道选择题,每道选择题有4个选项,其中只有一个是正确的。评分标准规定:“每题只选一项,答对得5分,不答或答错得0分”.某考生每道题都给出一个答案, 且已确定有7道题的答案是正确的,而其余题中,有1道题可判断出两个选项是错误的,有一道可以判断出一个选项是错误的,还有一道因不了解题意只能乱猜。试求出该考生:
(1)选择题得满分(50分)的概率;
(2)选择题所得分数的数学期望。
【解析】第一问总利用独立事件的概率乘法公式得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为,
所以得分为50分的概率为:
第二问中,依题意,该考生得分的范围为{35,40,45,50}
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为
得分为40分的概率为:
同理求得,得分为45分的概率为:
得分为50分的概率为:
得到分布列和期望值。
解:(1)得分为50分,10道题必须全做对.在其余的3道题中,有1道题答对的概率为,有1道题答对的概率为,还有1道答对的概率为,
所以得分为50分的概率为: …………5分
(2)依题意,该考生得分的范围为{35,40,45,50} …………6分
得分为35分表示只做对了7道题,其余各题都做错,
所以概率为 …………7分
得分为40分的概率为: …………8分
同理求得,得分为45分的概率为: …………9分
得分为50分的概率为: …………10分
所以得分的分布列为
35 |
40 |
45 |
50 |
|
|
数学期望
学校要用三辆车从北湖校区把教师接到文庙校区,已知从北湖校区到文庙校区有两条公路,汽车走公路①堵车的概率为,不堵车的概率为;汽车走公路②堵车的概率为,不堵车的概率为,若甲、乙两辆汽车走公路①,丙汽车由于其他原因走公路②,且三辆车是否堵车相互之间没有影响。(I)若三辆车中恰有一辆车被堵的概率为,求走公路②堵车的概率;(Ⅱ)在(I)的条件下,求三辆车中被堵车辆的个数的分布列和数学期望。
【解析】第一问中,由已知条件结合n此独立重复试验的概率公式可知,得
第二问中可能的取值为0,1,2,3 ,
,
从而得到分布列和期望值
解:(I)由已知条件得 ,即,则的值为。
(Ⅱ)可能的取值为0,1,2,3 ,
,
的分布列为:(1分)
0 |
1 |
2 |
3 |
|
所以
某校从参加高三年级第一学期期末考试的学生中抽出50名学生,并统计了他们的数学成绩(成绩均为整数,满分为100分),将数学成绩进行分组并根据各组人数制成如下频率分布表:
(Ⅰ)将上面的频率分布表补充完整,并估计本次考试全校85分以上学生的比例;
(Ⅱ)为了帮助成绩差的同学提高数学成绩,学校决定成立“二帮一”小组,即从成绩为中任选出两位同学,共同帮助成绩在中的某一个同学,试列出所有基本事件;若同学成绩为43分,同学成绩为95分,求、两同学恰好被安排在“二帮一”中同一小组的概率.
分 组 |
频 数 |
频 率[来源:学_科_网] |
[40, 50 ) |
2 |
0.04 |
[ 50, 60 ) |
3 |
0.06 |
[ 60, 70 ) |
14 |
0.28 |
[ 70, 80 ) |
15 |
0.30 |
[ 80, 90 ) |
|
|
[ 90, 100 ] |
4 |
0.08 |
合 计 |
|
|
【解析】第一问利用表格可知第五行以此填入 12 0.24
第七行以此填入 50 1 估计本次全校85分以上学生比例为32%
第二问中,设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
l利用古典概型概率得到。
(Ⅰ)第五行以此填入 12 0.24 ……………2分
第七行以此填入 50 1 ……………4分
估计本次全校85分以上学生比例为32% ……………6分
(Ⅱ)设数学成绩在[90,100]间的四个同学分别用字母B1,B2,B3,B4表示;被帮助的两个同学为A1,A2出现的“二帮一”小组有A1B1B2;A1B1B3;A1B1B4;A1B2B3;A1B2B4;A1B3B4
A2B1B2;A2B1B3;A2B1B4;A2B2B3;A2B2B4;A2B3B4
A1、B1两同学恰好被安排在“二帮一”中同一小组的有 A1B1B2;A1B1B3;A1B1B4
所以 A1、B1两同学恰好被安排在“二帮一”中同一小组的概率为 3 /12 =1 /4
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com