18.证明:要证明成立, 只需证成立, 只需证成立,只需证成立,上式显然成立,所以原命题成立. 查看更多

 

题目列表(包括答案和解析)

某同学在证明命题“
7
-
3
6
-
2
”时作了如下分析,请你补充完整.
要证明
7
-
3
6
-
2
,只需证明
7
+
2
6
+
3
7
+
2
6
+
3
,只需证明
(
7
+
2
)2<(
6
+
3
)2
(
7
+
2
)2<(
6
+
3
)2

展开得9+2
14
<9+2
18
,即
14
18
,只需证明14<18,
因为14<18显然成立
因为14<18显然成立

所以原不等式:
7
+
2
6
+
3
成立.

查看答案和解析>>

要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了

A.比较法           B.综合法           C.分析法           D.反证法

 

查看答案和解析>>

要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了

A.比较法 B.综合法 C.分析法 D.反证法

查看答案和解析>>

要证,只需证,即需,即需证,即证35>11,因为35>11显然成立,所以原不等式成立。以上证明运用了
A.比较法B.综合法C.分析法D.反证法

查看答案和解析>>

求证:-1>.证明:要证-1>,只需证+1,即证7+2+5>11+2+1,,因为35>11,所以原不等式成立.以上证明运用了

[  ]
A.

分析法

B.

综合法

C.

分析法与综合法综合使用

D.

间接证明

查看答案和解析>>


同步练习册答案