请看我们用WHILE循环实现1到100累加为例.做一下说明: “1+2+--+100 部分程序如下: sum = 0 i =1 WHILE i <= 100 sum = sum+ i i=i+1 WEND 这段程序中.循环的条件是“i <= 100 ,因此.一开始i肯定需要一个确定的值.前面的 “i = 0 这一个语句.在声明变量i的同时.也为i赋了初始值“1 .这样.条件 i <= 100 得以成立(因为i为1.所以 条件“i <= 100 当然成立). 查看更多

 

题目列表(包括答案和解析)

精英家教网我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ai1=aii=i;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn
(Ⅰ)试写出b2-2b1,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);
(Ⅱ)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn
(Ⅲ)数列{bn}中是否存在不同的三项bp,bq,br(p、q、r为正整数)恰好成等差数列?若存在,求出p、q、r的关系;若不存在,请说明理由.

查看答案和解析>>

我们用符号“||”定义过一些数字概念,如实数绝对值的概念:对于a∈R,|a|=
a,a>0
0,a=0
-a,a<0
,可以证明,对任意a,b∈R,不等式|a|-|b|≤|a+b|≤|a|+|b|成立.
(1)再写出两个这类数学概念的定义及其成立的不等式;
(2)对于集合A,定义“|A|”为集合A中元素的个数,对任意的集合A、B有类似的不等式成立吗?如果有,写出一个,并指出等号成立的条件(不必说明理由);如果没有,请说明理由;
(3)设有集合A、B,若|A|=15,|B|≥15,若从A中任取两上元素,恰好都是B中元素的概率p≥
1
5
,求|A∩B|的取值范围.

查看答案和解析>>

出于应用方便和数学交流的需要,我们教材定义向量的坐标如下:取
e1
e2
为直角坐标第xOy中与x轴和y轴正方向相同的单位向量,根据平面向量基本定理,对于该平面上的任意一个向量
a
,则存在唯一的一对实数λ,μ,使得
a
=λ
e1
e2
,我们就把实数对(λ,μ)称作向量
a
的坐标.并依据这样的定义研究了向量加法、减法、数乘向量及数量积的坐标运算公式.现在我们用
i
j
表示斜坐标系x‘Oy’中与x‘轴和y轴正方向相同的单位向量,其中<
i
j
>=
π
3

(1)请你模仿直角坐标系xOy中向量坐标的定义方式,用向量
i
j
做基底向量定义斜坐标系x‘Oy’平面上的任意一个向量
a
的坐标;
(2)在(1)的基础上研究斜坐标系x‘Oy’中向量的加法、减法、数乘向量及数量积的坐标运算公式.

查看答案和解析>>

我们用部分自然数构造如下的数表:用aij(i≥j)表示第i行第j个数(i、j为正整数),使ail=aii=i ;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第n(n为正整数)行中各数之和为bn

   (1)试写出b2一2b1;,b3-2b2,b4-2b3,b5-2b4,并推测bn+1和bn的关系(无需证明);

   (2)证明数列{bn+2}是等比数列,并求数列{bn}的通项公式bn

   (3)数列{ bn}中是否存在不同的三项bp,bq,br(p,q,r为正整数)恰好成等差数列?若存在求出P,q,r的关系;若不存在,请说明理由.

 


查看答案和解析>>

(08年静安区质检文)我们用部分自然数构造如下的数表:用表示第行第个数(为正整数),使;每行中的其余各数分别等于其“肩膀”上的两个数之和(第一、二行除外,如图),设第为正整数)行中各数之和为.

(1)试写出,并推测的关系(无需证明);

(2)证明数列是等比数列,并求数列的通项公式

(3)数列中是否存在不同的三项为正整数)恰好成等差数列?若存在,求出的关系;若不存在,请说明理由.

 

查看答案和解析>>


同步练习册答案